-
Notifications
You must be signed in to change notification settings - Fork 38
/
misc.py
executable file
·354 lines (296 loc) · 13.6 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import sys
import glob
import datetime
import pickle
import re
import numpy as np
from collections import OrderedDict
import scipy.ndimage
import PIL.Image
import config
import dataset
import legacy
#----------------------------------------------------------------------------
# Convenience wrappers for pickle that are able to load data produced by
# older versions of the code.
def load_pkl(filename):
with open(filename, 'rb') as file:
return legacy.LegacyUnpickler(file, encoding='latin1').load()
def save_pkl(obj, filename):
with open(filename, 'wb') as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
#----------------------------------------------------------------------------
# Image utils.
def adjust_dynamic_range(data, drange_in, drange_out):
if drange_in != drange_out:
scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0]))
bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
data = data * scale + bias
return data
def create_image_grid(images, grid_size=None):
assert images.ndim == 3 or images.ndim == 4
num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2]
if grid_size is not None:
grid_w, grid_h = tuple(grid_size)
else:
grid_w = max(int(np.ceil(np.sqrt(num))), 1)
grid_h = max((num - 1) // grid_w + 1, 1)
grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype)
for idx in range(num):
x = (idx % grid_w) * img_w
y = (idx // grid_w) * img_h
grid[..., y : y + img_h, x : x + img_w] = images[idx]
return grid
def convert_to_pil_image(image, drange=[0,1]):
assert image.ndim == 2 or image.ndim == 3
if image.ndim == 3:
if image.shape[0] == 1:
image = image[0] # grayscale CHW => HW
else:
image = image.transpose(1, 2, 0) # CHW -> HWC
image = adjust_dynamic_range(image, drange, [0,255])
image = np.rint(image).clip(0, 255).astype(np.uint8)
format = 'RGB' if image.ndim == 3 else 'L'
return PIL.Image.fromarray(image, format)
def save_image(image, filename, drange=[0,1], quality=95):
img = convert_to_pil_image(image, drange)
if '.jpg' in filename:
img.save(filename,"JPEG", quality=quality, optimize=True)
else:
img.save(filename)
def save_image_grid(images, filename, drange=[0,1], grid_size=None):
if images.shape[-3] <=3:
convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename)
elif images.shape[-3]==6:
convert_to_pil_image(create_image_grid(images[:,0:3,:,:], grid_size), drange).save(filename)
convert_to_pil_image(create_image_grid(images[:, 3:6, :, :], grid_size), drange).save(os.path.splitext(filename)[0]+'_shp'+os.path.splitext(filename)[1])
elif images.shape[-3] == 9:
convert_to_pil_image(create_image_grid(images[:, 0:3, :, :], grid_size), drange).save(filename)
convert_to_pil_image(create_image_grid(images[:, 3:6, :, :], grid_size), drange).save(
os.path.splitext(filename)[0] + '_shp' + os.path.splitext(filename)[1])
convert_to_pil_image(create_image_grid(images[:, 6:9, :, :], grid_size), drange).save(
os.path.splitext(filename)[0] + '_nor' + os.path.splitext(filename)[1])
#----------------------------------------------------------------------------
# Logging of stdout and stderr to a file.
class OutputLogger(object):
def __init__(self):
self.file = None
self.buffer = ''
def set_log_file(self, filename, mode='wt'):
assert self.file is None
self.file = open(filename, mode)
if self.buffer is not None:
self.file.write(self.buffer)
self.buffer = None
def write(self, data):
if self.file is not None:
self.file.write(data)
if self.buffer is not None:
self.buffer += data
def flush(self):
if self.file is not None:
self.file.flush()
class TeeOutputStream(object):
def __init__(self, child_streams, autoflush=False):
self.child_streams = child_streams
self.autoflush = autoflush
def write(self, data):
for stream in self.child_streams:
stream.write(data)
if self.autoflush:
self.flush()
def flush(self):
for stream in self.child_streams:
stream.flush()
output_logger = None
def init_output_logging():
global output_logger
if output_logger is None:
output_logger = OutputLogger()
sys.stdout = TeeOutputStream([sys.stdout, output_logger], autoflush=True)
sys.stderr = TeeOutputStream([sys.stderr, output_logger], autoflush=True)
def set_output_log_file(filename, mode='wt'):
if output_logger is not None:
output_logger.set_log_file(filename, mode)
#----------------------------------------------------------------------------
# Reporting results.
def create_result_subdir(result_dir, desc):
# Select run ID and create subdir.
while True:
run_id = 0
for fname in glob.glob(os.path.join(result_dir, '*')):
try:
fbase = os.path.basename(fname)
ford = int(fbase[:fbase.find('-')])
run_id = max(run_id, ford + 1)
except ValueError:
pass
result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc))
try:
os.makedirs(result_subdir)
break
except OSError:
if os.path.isdir(result_subdir):
continue
raise
print("Saving results to", result_subdir)
set_output_log_file(os.path.join(result_subdir, 'log.txt'))
# Export config.
try:
with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout:
for k, v in sorted(config.__dict__.items()):
if not k.startswith('_'):
fout.write("%s = %s\n" % (k, str(v)))
except:
pass
return result_subdir
def format_time(seconds):
s = int(np.rint(seconds))
if s < 60: return '%ds' % (s)
elif s < 60*60: return '%dm %02ds' % (s // 60, s % 60)
elif s < 24*60*60: return '%dh %02dm %02ds' % (s // (60*60), (s // 60) % 60, s % 60)
else: return '%dd %02dh %02dm' % (s // (24*60*60), (s // (60*60)) % 24, (s // 60) % 60)
#----------------------------------------------------------------------------
# Locating results.
def locate_result_subdir(run_id_or_result_subdir):
if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir):
return run_id_or_result_subdir
searchdirs = []
searchdirs += ['']
searchdirs += ['results']
searchdirs += ['networks']
for searchdir in searchdirs:
dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir)
dir = os.path.join(dir, str(run_id_or_result_subdir))
if os.path.isdir(dir):
return dir
prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir)
dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*')))
dirs = [dir for dir in dirs if os.path.isdir(dir)]
if len(dirs) == 1:
return dirs[0]
raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
def list_network_pkls(run_id_or_result_subdir, include_final=True):
result_subdir = locate_result_subdir(run_id_or_result_subdir)
pkls = sorted(glob.glob(os.path.join(result_subdir, 'network-*.pkl')))
if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl':
if include_final:
pkls.append(pkls[0])
del pkls[0]
return pkls
def locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None):
if isinstance(run_id_or_result_subdir_or_network_pkl, str) and os.path.isfile(run_id_or_result_subdir_or_network_pkl):
return run_id_or_result_subdir_or_network_pkl
pkls = list_network_pkls(run_id_or_result_subdir_or_network_pkl)
if len(pkls) >= 1 and snapshot is None:
return pkls[-1]
for pkl in pkls:
try:
name = os.path.splitext(os.path.basename(pkl))[0]
number = int(name.split('-')[-1])
if number == snapshot:
return pkl
except ValueError: pass
except IndexError: pass
raise IOError('Cannot locate network pkl for snapshot', snapshot)
def get_id_string_for_network_pkl(network_pkl):
p = network_pkl.replace('.pkl', '').replace('\\', '/').split('/')
return '-'.join(p[max(len(p) - 2, 0):])
#----------------------------------------------------------------------------
# Loading and using trained networks.
def load_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None):
return load_pkl(locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot))
def random_latents(num_latents, G, random_state=None):
if random_state is not None:
return random_state.randn(num_latents, *G.input_shape[1:]).astype(np.float32)
else:
return np.random.randn(num_latents, *G.input_shape[1:]).astype(np.float32)
def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment
result_subdir = locate_result_subdir(run_id)
# Parse config.txt.
parsed_cfg = dict()
with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f:
for line in f:
if line.startswith('dataset =') or line.startswith('train ='):
exec(line, parsed_cfg, parsed_cfg)
dataset_cfg = parsed_cfg.get('dataset', dict())
train_cfg = parsed_cfg.get('train', dict())
mirror_augment = train_cfg.get('mirror_augment', False)
# Handle legacy options.
if 'h5_path' in dataset_cfg:
dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '')
if 'mirror_augment' in dataset_cfg:
mirror_augment = dataset_cfg.pop('mirror_augment')
if 'max_labels' in dataset_cfg:
v = dataset_cfg.pop('max_labels')
if v is None: v = 0
if v == 'all': v = 'full'
dataset_cfg['max_label_size'] = v
if 'max_images' in dataset_cfg:
dataset_cfg.pop('max_images')
# Handle legacy dataset names.
v = dataset_cfg['tfrecord_dir']
v = v.replace('-32x32', '').replace('-32', '')
v = v.replace('-128x128', '').replace('-128', '')
v = v.replace('-256x256', '').replace('-256', '')
v = v.replace('-1024x1024', '').replace('-1024', '')
v = v.replace('celeba-hq', 'celebahq')
v = v.replace('cifar-10', 'cifar10')
v = v.replace('cifar-100', 'cifar100')
v = v.replace('mnist-rgb', 'mnistrgb')
v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v)
v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v)
dataset_cfg['tfrecord_dir'] = v
# Load dataset.
dataset_cfg.update(kwargs)
dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg)
return dataset_obj, mirror_augment
def apply_mirror_augment(minibatch):
mask = np.random.rand(minibatch.shape[0]) < 0.5
minibatch = np.array(minibatch)
minibatch[mask] = minibatch[mask, :, :, ::-1]
return minibatch
#----------------------------------------------------------------------------
# Text labels.
_text_label_cache = OrderedDict()
def draw_text_label(img, text, x, y, alignx=0.5, aligny=0.5, color=255, opacity=1.0, glow_opacity=1.0, **kwargs):
color = np.array(color).flatten().astype(np.float32)
assert img.ndim == 3 and img.shape[2] == color.size or color.size == 1
alpha, glow = setup_text_label(text, **kwargs)
xx, yy = int(np.rint(x - alpha.shape[1] * alignx)), int(np.rint(y - alpha.shape[0] * aligny))
xb, yb = max(-xx, 0), max(-yy, 0)
xe, ye = min(alpha.shape[1], img.shape[1] - xx), min(alpha.shape[0], img.shape[0] - yy)
img = np.array(img)
slice = img[yy+yb : yy+ye, xx+xb : xx+xe, :]
slice[:] = slice * (1.0 - (1.0 - (1.0 - alpha[yb:ye, xb:xe]) * (1.0 - glow[yb:ye, xb:xe] * glow_opacity)) * opacity)[:, :, np.newaxis]
slice[:] = slice + alpha[yb:ye, xb:xe, np.newaxis] * (color * opacity)[np.newaxis, np.newaxis, :]
return img
def setup_text_label(text, font='Calibri', fontsize=32, padding=6, glow_size=2.0, glow_coef=3.0, glow_exp=2.0, cache_size=100): # => (alpha, glow)
# Lookup from cache.
key = (text, font, fontsize, padding, glow_size, glow_coef, glow_exp)
if key in _text_label_cache:
value = _text_label_cache[key]
del _text_label_cache[key] # LRU policy
_text_label_cache[key] = value
return value
# Limit cache size.
while len(_text_label_cache) >= cache_size:
_text_label_cache.popitem(last=False)
# Render text.
import moviepy.editor # pip install moviepy
alpha = moviepy.editor.TextClip(text, font=font, fontsize=fontsize).mask.make_frame(0)
alpha = np.pad(alpha, padding, mode='constant', constant_values=0.0)
glow = scipy.ndimage.gaussian_filter(alpha, glow_size)
glow = 1.0 - np.maximum(1.0 - glow * glow_coef, 0.0) ** glow_exp
# Add to cache.
value = (alpha, glow)
_text_label_cache[key] = value
return value
#----------------------------------------------------------------------------