Skip to content
This repository has been archived by the owner on Dec 22, 2021. It is now read-only.

Latest commit

 

History

History
1178 lines (892 loc) · 39 KB

SIMD.md

File metadata and controls

1178 lines (892 loc) · 39 KB

WebAssembly 128-bit packed SIMD Extension

This specification describes a 128-bit packed Single Instruction Multiple Data (SIMD) extension to WebAssembly that can be implemented efficiently on current popular instruction set architectures.

See also The binary encoding of SIMD instructions.

Motivation

WebAssembly aims to take advantage of common hardware capabilities for near native speed. The motivation for this proposal is to introduce WebAssembly operations that map to commonly available SIMD instructions in hardware.

SIMD instructions in hardware work by performing simultaneous computations over packed data in one instruction. These are commonly used to improve performance for multimedia applications. The set of SIMD instructions in hardware is large, and varies across different versions of hardware. This proposal is comprised of a portable subset of operations that in most cases map to commonly used instructions in mordern hardware.

Types

WebAssembly is extended with a new v128 value type and a number of new kinds of immediate operands used by the SIMD instructions.

SIMD value type

The v128 value type is the only type introduced in this extension. It has a concrete mapping to a 128-bit representation with bits numbered 0–127. The v128 type corresponds to a vector register in a typical SIMD ISA. The interpretation of the 128 bits in the vector register is provided by the individual instructions. When a v128 value is represented as 16 bytes, bits 0-7 go in the first byte with bit 0 as the LSB, bits 8-15 go in the second byte, etc.

Immediate operands

Some of the new SIMD instructions defined here have immediate operands that are encoded as individual bytes in the binary encoding. Many have a limited valid range, and it is a validation error if the immediate operands are out of range.

  • ImmByte: A single unconstrained byte (0-255).
  • ImmLaneIdx2: A byte with values in the range 0–1 identifying a lane.
  • ImmLaneIdx4: A byte with values in the range 0–3 identifying a lane.
  • ImmLaneIdx8: A byte with values in the range 0–7 identifying a lane.
  • ImmLaneIdx16: A byte with values in the range 0–15 identifying a lane.
  • ImmLaneIdx32: A byte with values in the range 0–31 identifying a lane.

Operations on the SIMD value type

The single v128 SIMD type can be used to represent different types of packed data, e.g., it can represent four 32-bit floating point values, 8 16-bit signed or unsigned integer values, etc.

The instructions introduced in this specification are named according to the following schema: {interpretation}.{operation}. Where the {interpretation} prefix denotes how the bytes of the v128 type are interpreted by the {operation}.

For example, the instructions f32x4.extract_lane and i64x2.extract_lane perform the same semantic operation: extracting the scalar value of a vector lane. However, the f32x4.extract_lane instruction returns a 32-bit wide floating point value, while the i64x2.extract_lane instruction returns a 64-bit wide integer value.

The v128 vector type interpretation interprets the vector as a bag of bits. The v{lane_width}x{n} interpretations (e.g. v32x4) interpret the vector as n lanes of lane_width bits. The {t}{lane_width}x{n} interpretations (e.g. i32x4 or f32x4) interpret the vector as n lanes of type {t}{lane_width}.

Lane division interpretation

The first level of interpretations of the v128 type imposes a lane structure on the bits:

  • v8x16 : v128: 8-bit lanes numbered 0–15. Lane n corresponds to bits 8n – 8n+7.
  • v16x8 : v128: 16-bit lanes numbered 0–7. Lane n corresponds to bits 16n – 16n+15.
  • v32x4 : v128: 32-bit lanes numbered 0–3. Lane n corresponds to bits 32n – 32n+31.
  • v64x2 : v128: 64-bit lanes numbered 0–1. Lane n corresponds to bits 64n – 64n+63.

The lane dividing interpretations don't say anything about the semantics of the bits in each lane. The interpretations have properties used by the semantic specification pseudo-code below:

S S.LaneBits S.Lanes S.MaskType
v8x16 8 16 i8x16
v16x8 16 8 i16x8
v32x4 32 4 i32x4
v64x2 64 2 i64x2

Since WebAssembly is little-endian, the least significant bit in each lane is the bit with the lowest number.

Modulo integer interpretations

The bits in a lane can be interpreted as integers with modulo arithmetic semantics. Many arithmetic operations can be defined on these types which don't impose a signed or unsigned integer interpretation.

  • i8x16 : v8x16: Each lane is an i8.
  • i16x8 : v16x8: Each lane is an i16.
  • i32x4 : v32x4: Each lane is an i32.
  • i64x2 : v64x2: Each lane is an i64.

Additional properties:

S S.Smin S.Smax S.Umax
i8x16 -2^7 2^7-1 2^8-1
i16x8 -2^15 2^15-1 2^16-1
i32x4 -2^31 2^31-1 2^32-1
i64x2 -2^63 2^63-1 2^64-1

Some operations interpret each lane specifically as a signed or unsigned integer. These operations have _s and _u suffixes as is the convention is WebAssembly.

Floating-point interpretations

Each lane is interpreted as an IEEE floating-point number.

  • f32x4 : v32x4: Each lane is an f32.
  • f64x2 : v64x2: Each lane is an f64.

The floating-point operations in this specification aim to be compatible with WebAssembly's scalar floating-point operations. In particular, the rules about NaN propagation and default NaN values are the same, and all operations use the default roundTiesToEven rounding mode.

JavaScript API and SIMD Values

Accessing WebAssembly module imports or exports containing SIMD Type from JavaScript will throw.

Module Function Imports

Calling an imported function from JavaScript when the function arguments or result is of type v128 will cause the host function to immidiately throw a TypeError.

Exported Function Exotic Objects

Invoking the [[Call]] method of an Exported Function Exotic Object when the function type of its [[Closure]] has an argument or result of type v128 will cause the host function to immidiately throw a TypeError.

WebAssembly Module Instatiation

Instantiating a WebAssembly Module from a Module moduleObject will throw a LinkError exception, when the global's valtype is v128 and the imported objects type is not WebAssembly.Global.

Exported Functions

Exported Function Call

Calling an Exported Function will throw a TypeError, when parameters or results contains a v128. This error is thrown each time the [[Call]] method is invoked.

Creating a host function

Creating a host function from JavaScript object will throw a TypeError, when the host function signature contains a v128.

Global constructor

If Global(descriptor, v) constructor will throw a TypeError, when invoked with v of valuetype v128.

JavaScript coercion

ToJSValue

The algorithm toJSValue(w) should have an assertion ensuring w is not of the form v128.const v128.

ToWebAssemblyValue

The algorithm ToWebAssemblyValue(v, type) should have an assertion ensuring type is not v128.

JavaScript API Global Object algorithms

ToValueType

The algorithm ToValueType(s) will return 'v128' if s equals "v128".

DefaultValue

The algorithm DefaultValueType(valueType) will return v128.const 0.

GetGlobalValue

The algorithm GetGlobalValue(Global global) will throw a TypeError, when type_global(store, global.[[Global]]) is of the form mut v128.

Global value attribute Setter

The setter of the value attribute of Global will throw a TypeError, when invoked with a value v of valuetype v128.

Operations

The SIMD operations described in this sections are generally named S.Op, where S is either a SIMD type or one of the interpretations of a SIMD type. Immediate mode operands are prefixed with imm.

Many operations are simply the lane-wise application of a scalar operation:

def S.lanewise_unary(func, a):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = func(a[i])
    return result

def S.lanewise_binary(func, a, b):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = func(a[i], b[i])
    return result

Comparison operators produce a mask vector where the bits in each lane are 0 for false and all ones for true:

def S.lanewise_comparison(func, a, b):
    all_ones = S.MaskType.Umax
    result = S.MaskType.New()
    for i in range(S.Lanes):
        result[i] = all_ones if func(a[i], b[i]) else 0
    return result

Constructing SIMD values

Constant

  • v128.const(imm: ImmByte[16]) -> v128

Materialize a constant v128 SIMD value from the 16 immediate bytes in the immediate mode operand imm . The v128.const instruction is encoded with 16 immediate bytes which provide the bits of the vector directly.

Create vector with identical lanes

  • i8x16.splat(x: i32) -> v128
  • i16x8.splat(x: i32) -> v128
  • i32x4.splat(x: i32) -> v128
  • i64x2.splat(x: i64) -> v128
  • f32x4.splat(x: f32) -> v128
  • f64x2.splat(x: f64) -> v128

Construct a vector with x replicated to all lanes:

def S.splat(x):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = S.Reduce(x)
    return result

Accessing lanes

Extract lane as a scalar

  • i8x16.extract_lane_s(a: v128, imm: ImmLaneIdx16) -> i32
  • i8x16.extract_lane_u(a: v128, imm: ImmLaneIdx16) -> i32
  • i16x8.extract_lane_s(a: v128, imm: ImmLaneIdx8) -> i32
  • i16x8.extract_lane_u(a: v128, imm: ImmLaneIdx8) -> i32
  • i32x4.extract_lane(a: v128, imm: ImmLaneIdx4) -> i32
  • i64x2.extract_lane(a: v128, imm: ImmLaneIdx2) -> i64
  • f32x4.extract_lane(a: v128, imm: ImmLaneIdx4) -> f32
  • f64x2.extract_lane(a: v128, imm: ImmLaneIdx2) -> f64

Extract the scalar value of lane specified in the immediate mode operand imm in a. The {interpretation}.extract_lane{_s}{_u} instructions are encoded with one immediate byte providing the index of the lane to extract.

def S.extract_lane(a, i):
    return a[i]

The _s and _u variants will sign-extend or zero-extend the lane value to i32 respectively.

Replace lane value

  • i8x16.replace_lane(a: v128, imm: ImmLaneIdx16, x: i32) -> v128
  • i16x8.replace_lane(a: v128, imm: ImmLaneIdx8, x: i32) -> v128
  • i32x4.replace_lane(a: v128, imm: ImmLaneIdx4, x: i32) -> v128
  • i64x2.replace_lane(a: v128, imm: ImmLaneIdx2, x: i64) -> v128
  • f32x4.replace_lane(a: v128, imm: ImmLaneIdx4, x: f32) -> v128
  • f64x2.replace_lane(a: v128, imm: ImmLaneIdx2, x: f64) -> v128

Return a new vector with lanes identical to a, except for the lane specified in the immediate mode operand imm which has the value x. The {interpretation}.replace_lane instructions are encoded with an immediate byte providing the index of the lane the value of which is to be replaced.

def S.replace_lane(a, i, x):
    result = S.New()
    for j in range(S.Lanes):
        result[j] = a[j]
    result[i] = x
    return result

The input lane value, x, is interpreted the same way as for the splat instructions. For the i8 and i16 lanes, the high bits of x are ignored.

Shuffling using immediate indices

  • i8x16.shuffle(a: v128, b: v128, imm: ImmLaneIdx32[16]) -> v128

Returns a new vector with lanes selected from the lanes of the two input vectors a and b specified in the 16 byte wide immediate mode operand imm. This instruction is encoded with 16 bytes providing the indices of the elements to return. The indices i in range [0, 15] select the i-th element of a. The indices in range [16, 31] select the i - 16-th element of b.

def S.shuffle(a, b, s):
    result = S.New()
    for i in range(S.Lanes):
        if s[i] < S.lanes:
            result[i] = a[s[i]]
        else:
            result[i] = b[s[i] - S.lanes]
    return result

Swizzling using variable indices

  • i8x16.swizzle(a: v128, s: v128) -> v128

Returns a new vector with lanes selected from the lanes of the first input vector a specified in the second input vector s. The indices i in range [0, 15] select the i-th element of a. For indices outside of the range the resulting lane is initialized to 0.

def S.swizzle(a, s):
    result = S.New()
    for i in range(S.Lanes):
        if s[i] < S.lanes:
            result[i] = a[s[i]]
        else:
            result[i] = 0
    return result

Integer arithmetic

Wrapping integer arithmetic discards the high bits of the result.

def S.Reduce(x):
    bitmask = (1 << S.LaneBits) - 1
    return x & bitmask

There is no integer division operation provided here. This operation is not commonly part of 128-bit SIMD ISAs.

Integer addition

  • i8x16.add(a: v128, b: v128) -> v128
  • i16x8.add(a: v128, b: v128) -> v128
  • i32x4.add(a: v128, b: v128) -> v128
  • i64x2.add(a: v128, b: v128) -> v128

Lane-wise wrapping integer addition:

def S.add(a, b):
    def add(x, y):
        return S.Reduce(x + y)
    return S.lanewise_binary(add, a, b)

Integer subtraction

  • i8x16.sub(a: v128, b: v128) -> v128
  • i16x8.sub(a: v128, b: v128) -> v128
  • i32x4.sub(a: v128, b: v128) -> v128
  • i64x2.sub(a: v128, b: v128) -> v128

Lane-wise wrapping integer subtraction:

def S.sub(a, b):
    def sub(x, y):
        return S.Reduce(x - y)
    return S.lanewise_binary(sub, a, b)

Integer multiplication

  • i16x8.mul(a: v128, b: v128) -> v128
  • i32x4.mul(a: v128, b: v128) -> v128
  • i64x2.mul(a: v128, b: v128) -> v128

Lane-wise wrapping integer multiplication:

def S.mul(a, b):
    def mul(x, y):
        return S.Reduce(x * y)
    return S.lanewise_binary(mul, a, b)

Integer dot product

  • i32x4.dot_i16x8_s(a: v128, b: v128) -> v128

Lane-wise multiply signed 16-bit integers in the two input vectors and add adjacent pairs of the full 32-bit results.

Integer negation

  • i8x16.neg(a: v128) -> v128
  • i16x8.neg(a: v128) -> v128
  • i32x4.neg(a: v128) -> v128
  • i64x2.neg(a: v128) -> v128

Lane-wise wrapping integer negation. In wrapping arithmetic, y = -x is the unique value such that x + y == 0.

def S.neg(a):
    def neg(x):
        return S.Reduce(-x)
    return S.lanewise_unary(neg, a)

Extended integer arithmetic

Extended integer multiplication

  • i16x8.extmul_low_i8x16_s(a: v128, b: v128) -> v128
  • i16x8.extmul_high_i8x16_s(a: v128, b: v128) -> v128
  • i16x8.extmul_low_i8x16_u(a: v128, b: v128) -> v128
  • i16x8.extmul_high_i8x16_u(a: v128, b: v128) -> v128
  • i32x4.extmul_low_i16x8_s(a: v128, b: v128) -> v128
  • i32x4.extmul_high_i16x8_s(a: v128, b: v128) -> v128
  • i32x4.extmul_low_i16x8_u(a: v128, b: v128) -> v128
  • i32x4.extmul_high_i16x8_u(a: v128, b: v128) -> v128
  • i64x2.extmul_low_i32x4_s(a: v128, b: v128) -> v128
  • i64x2.extmul_high_i32x4_s(a: v128, b: v128) -> v128
  • i64x2.extmul_low_i32x4_u(a: v128, b: v128) -> v128
  • i64x2.extmul_high_i32x4_u(a: v128, b: v128) -> v128

Lane-wise integer extended multiplication producing twice wider result than the inputs.

These instructions provide a more performant equivalent to the following composite operations:

  • i16x8.extmul_low_i8x16_s(a, b) is equivalent to i16x8.mul(i16x8.extend_low_i8x16_s(a), i16x8.extend_low_i8x16_s(b)).
  • i16x8.extmul_high_i8x16_s(a, b) is equivalent to i16x8.mul(i16x8.extend_high_i8x16_s(a), i16x8.extend_high_i8x16_s(b)).
  • i16x8.extmul_low_i8x16_u(a, b) is equivalent to i16x8.mul(i16x8.extend_low_i8x16_u(a), i16x8.extend_low_i8x16_u(b)).
  • i16x8.extmul_high_i8x16_u(a, b) is equivalent to i16x8.mul(i16x8.extend_high_i8x16_u(a), i16x8.extend_high_i8x16_u(b)).
  • i32x4.extmul_low_i16x8_s(a, b) is equivalent to i32x4.mul(i32x4.extend_low_i16x8_s(a), i32x4.extend_low_i16x8_s(b)).
  • i32x4.extmul_high_i16x8_s(a, b) is equivalent to i32x4.mul(i32x4.extend_high_i16x8_s(a), i32x4.extend_high_i16x8_s(b)).
  • i32x4.extmul_low_i16x8_u(a, b) is equivalent to i32x4.mul(i32x4.extend_low_i16x8_u(a), i32x4.extend_low_i16x8_u(b)).
  • i32x4.extmul_high_i16x8_u(a, b) is equivalent to i32x4.mul(i32x4.extend_high_i16x8_u(a), i32x4.extend_high_i16x8_u(b)).
  • i64x2.extmul_low_i32x4_s(a, b) is equivalent to i64x2.mul(i64x2.extend_low_i32x4_s(a), i64x2.extend_low_i32x4_s(b)).
  • i64x2.extmul_high_i32x4_s(a, b) is equivalent to i64x2.mul(i64x2.extend_high_i32x4_s(a), i64x2.extend_high_i32x4_s(b)).
  • i64x2.extmul_low_i32x4_u(a, b) is equivalent to i64x2.mul(i64x2.extend_low_i32x4_u(a), i64x2.extend_low_i32x4_u(b)).
  • i64x2.extmul_high_i32x4_u(a, b) is equivalent to i64x2.mul(i64x2.extend_high_i32x4_u(a), i64x2.extend_high_i32x4_u(b)).

Extended pairwise integer addition

  • i16x8.extadd_pairwise_i8x16_s(a: v128) -> v128
  • i16x8.extadd_pairwise_i8x16_u(a: v128) -> v128
  • i32x4.extadd_pairwise_i16x8_s(a: v128) -> v128
  • i32x4.extadd_pairwise_i16x8_u(a: v128) -> v128

Lane-wise integer extended pairwise addition producing extended results (twice wider results than the inputs).

def S.extadd_pairwise_T(ext, a):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = ext(a[i*2]) + ext(a[i*2+1])

def S.extadd_pairwise_T_s(a):
    return S.extadd_pairwise_T(Sext, a)

def S.extadd_pairwise_T_u(a):
    return S.extadd_pairwise_T(Zext, a)

Saturating integer arithmetic

Saturating integer arithmetic behaves differently on signed and unsigned lanes. It is only defined here for 8-bit and 16-bit integer lanes.

def S.SignedSaturate(x):
    if x < S.Smin:
        return S.Smin
    if x > S.Smax:
        return S.Smax
    return x

def S.UnsignedSaturate(x):
    if x < 0:
        return 0
    if x > S.Umax:
        return S.Umax
    return x

Saturating integer addition

  • i8x16.add_sat_s(a: v128, b: v128) -> v128
  • i8x16.add_sat_u(a: v128, b: v128) -> v128
  • i16x8.add_sat_s(a: v128, b: v128) -> v128
  • i16x8.add_sat_u(a: v128, b: v128) -> v128

Lane-wise saturating addition:

def S.add_sat_s(a, b):
    def addsat(x, y):
        return S.SignedSaturate(x + y)
    return S.lanewise_binary(addsat, S.AsSigned(a), S.AsSigned(b))

def S.add_sat_u(a, b):
    def addsat(x, y):
        return S.UnsignedSaturate(x + y)
    return S.lanewise_binary(addsat, S.AsUnsigned(a), S.AsUnsigned(b))

Saturating integer subtraction

  • i8x16.sub_sat_s(a: v128, b: v128) -> v128
  • i8x16.sub_sat_u(a: v128, b: v128) -> v128
  • i16x8.sub_sat_s(a: v128, b: v128) -> v128
  • i16x8.sub_sat_u(a: v128, b: v128) -> v128

Lane-wise saturating subtraction:

def S.sub_sat_s(a, b):
    def subsat(x, y):
        return S.SignedSaturate(x - y)
    return S.lanewise_binary(subsat, S.AsSigned(a), S.AsSigned(b))

def S.sub_sat_u(a, b):
    def subsat(x, y):
        return S.UnsignedSaturate(x - y)
    return S.lanewise_binary(subsat, S.AsUnsigned(a), S.AsUnsigned(b))

Saturating integer Q-format rounding multiplication

  • i16x8.q15mulr_sat_s(a: v128, b: v128) -> v128

Lane-wise saturating rounding multiplication in Q15 format:

def S.q15mulr_sat_s(a, b):
    def subq15mulr(x, y):
        return S.SignedSaturate((x * y + 0x4000) >> 15)
    return S.lanewise_binary(subq15mulr, S.AsSigned(a), S.AsSigned(b))

Lane-wise integer minimum

  • i8x16.min_s(a: v128, b: v128) -> v128
  • i8x16.min_u(a: v128, b: v128) -> v128
  • i16x8.min_s(a: v128, b: v128) -> v128
  • i16x8.min_u(a: v128, b: v128) -> v128
  • i32x4.min_s(a: v128, b: v128) -> v128
  • i32x4.min_u(a: v128, b: v128) -> v128

Compares lane-wise signed/unsigned integers, and returns the minimum of each pair.

def S.min(a, b):
    return S.lanewise_binary(min, a, b)

Lane-wise integer maximum

  • i8x16.max_s(a: v128, b: v128) -> v128
  • i8x16.max_u(a: v128, b: v128) -> v128
  • i16x8.max_s(a: v128, b: v128) -> v128
  • i16x8.max_u(a: v128, b: v128) -> v128
  • i32x4.max_s(a: v128, b: v128) -> v128
  • i32x4.max_u(a: v128, b: v128) -> v128

Compares lane-wise signed/unsigned integers, and returns the maximum of each pair.

def S.max(a, b):
    return S.lanewise_binary(max, a, b)

Lane-wise integer rounding average

  • i8x16.avgr_u(a: v128, b: v128) -> v128
  • i16x8.avgr_u(a: v128, b: v128) -> v128

Lane-wise rounding average:

def S.RoundingAverage(x, y):
    return (x + y + 1) // 2

def S.avgr_u(a, b):
    return S.lanewise_binary(S.RoundingAverage, S.AsUnsigned(a), S.AsUnsigned(b))

Lane-wise integer absolute value

  • i8x16.abs(a: v128) -> v128
  • i16x8.abs(a: v128) -> v128
  • i32x4.abs(a: v128) -> v128
  • i64x2.abs(a: v128) -> v128

Lane-wise wrapping absolute value.

def S.abs(a):
    return S.lanewise_unary(abs, S.AsSigned(a))

Bit shifts

Left shift by scalar

  • i8x16.shl(a: v128, y: i32) -> v128
  • i16x8.shl(a: v128, y: i32) -> v128
  • i32x4.shl(a: v128, y: i32) -> v128
  • i64x2.shl(a: v128, y: i32) -> v128

Shift the bits in each lane to the left by the same amount. The shift count is taken modulo lane width:

def S.shl(a, y):
    # Number of bits to shift: 0 .. S.LaneBits - 1.
    amount = y mod S.LaneBits
    def shift(x):
        return S.Reduce(x << amount)
    return S.lanewise_unary(shift, a)

Right shift by scalar

  • i8x16.shr_s(a: v128, y: i32) -> v128
  • i8x16.shr_u(a: v128, y: i32) -> v128
  • i16x8.shr_s(a: v128, y: i32) -> v128
  • i16x8.shr_u(a: v128, y: i32) -> v128
  • i32x4.shr_s(a: v128, y: i32) -> v128
  • i32x4.shr_u(a: v128, y: i32) -> v128
  • i64x2.shr_s(a: v128, y: i32) -> v128
  • i64x2.shr_u(a: v128, y: i32) -> v128

Shift the bits in each lane to the right by the same amount. The shift count is taken modulo lane width. This is an arithmetic right shift for the _s variants and a logical right shift for the _u variants.

def S.shr_s(a, y):
    # Number of bits to shift: 0 .. S.LaneBits - 1.
    amount = y mod S.LaneBits
    def shift(x):
        return x >> amount
    return S.lanewise_unary(shift, S.AsSigned(a))

def S.shr_u(a, y):
    # Number of bits to shift: 0 .. S.LaneBits - 1.
    amount = y mod S.LaneBits
    def shift(x):
        return x >> amount
    return S.lanewise_unary(shift, S.AsUnsigned(a))

Bitwise operations

Bitwise operations treat a v128 value type as a vector of 128 independent bits.

Bitwise logic

  • v128.and(a: v128, b: v128) -> v128
  • v128.or(a: v128, b: v128) -> v128
  • v128.xor(a: v128, b: v128) -> v128
  • v128.not(a: v128) -> v128

The logical operations defined on the scalar integer types are also available on the v128 type where they operate bitwise the same way C's &, |, ^, and ~ operators work on an unsigned type.

Bitwise AND-NOT

  • v128.andnot(a: v128, b: v128) -> v128

Bitwise AND of bits of a and the logical inverse of bits of b. This operation is equivalent to v128.and(a, v128.not(b)).

Bitwise select

  • v128.bitselect(v1: v128, v2: v128, c: v128) -> v128

Use the bits in the control mask c to select the corresponding bit from v1 when 1 and v2 when 0. This is the same as v128.or(v128.and(v1, c), v128.and(v2, v128.not(c))).

Note that the normal WebAssembly select instruction also works with vector types. It selects between two whole vectors controlled by a single scalar value, rather than selecting bits controlled by a control mask vector.

Lane-wise Population Count

  • i8x16.popcnt(v: v128) -> v128

Count the number of bits set to one within each lane.

def S.popcnt(v):
    return S.lanewise_unary(popcnt, v)

Boolean horizontal reductions

These operations reduce all the lanes of an integer vector to a single scalar 0 or 1 value. A lane is considered "true" if it is non-zero.

Any bit true

  • v128.any_true(a: v128) -> i32

These functions return 1 if any bit in a is non-zero, 0 otherwise.

All lanes true

  • i8x16.all_true(a: v128) -> i32
  • i16x8.all_true(a: v128) -> i32
  • i32x4.all_true(a: v128) -> i32
  • i64x2.all_true(a: v128) -> i32

These functions return 1 if all lanes in a are non-zero, 0 otherwise.

def S.all_true(a):
    for i in range(S.Lanes):
        if a[i] == 0:
            return 0
    return 1

Bitmask extraction

  • i8x16.bitmask(a: v128) -> i32
  • i16x8.bitmask(a: v128) -> i32
  • i32x4.bitmask(a: v128) -> i32
  • i64x2.bitmask(a: v128) -> i32

These operations extract the high bit for each lane in a and produce a scalar mask with all bits concatenated.

def S.bitmask(a):
    result = 0
    for i in range(S.Lanes):
        if a[i] < 0:
            result = result | (1 << i)
    return result

Comparisons

The comparison operations all compare two vectors lane-wise, and produce a mask vector with the same number of lanes as the input interpretation where the bits in each lane are 0 for false and all ones for true.

Equality

  • i8x16.eq(a: v128, b: v128) -> v128
  • i16x8.eq(a: v128, b: v128) -> v128
  • i32x4.eq(a: v128, b: v128) -> v128
  • i64x2.eq(a: v128, b: v128) -> v128
  • f32x4.eq(a: v128, b: v128) -> v128
  • f64x2.eq(a: v128, b: v128) -> v128

Integer equality is independent of the signed/unsigned interpretation. Floating point equality follows IEEE semantics, so a NaN lane compares not equal with anything, including itself, and +0.0 is equal to -0.0:

def S.eq(a, b):
    def eq(x, y):
        return x == y
    return S.lanewise_comparison(eq, a, b)

Non-equality

  • i8x16.ne(a: v128, b: v128) -> v128
  • i16x8.ne(a: v128, b: v128) -> v128
  • i32x4.ne(a: v128, b: v128) -> v128
  • i64x2.ne(a: v128, b: v128) -> v128
  • f32x4.ne(a: v128, b: v128) -> v128
  • f64x2.ne(a: v128, b: v128) -> v128

The ne operations produce the inverse of their eq counterparts:

def S.ne(a, b):
    def ne(x, y):
        return x != y
    return S.lanewise_comparison(ne, a, b)

Less than

  • i8x16.lt_s(a: v128, b: v128) -> v128
  • i8x16.lt_u(a: v128, b: v128) -> v128
  • i16x8.lt_s(a: v128, b: v128) -> v128
  • i16x8.lt_u(a: v128, b: v128) -> v128
  • i32x4.lt_s(a: v128, b: v128) -> v128
  • i32x4.lt_u(a: v128, b: v128) -> v128
  • i64x2.lt_s(a: v128, b: v128) -> v128
  • f32x4.lt(a: v128, b: v128) -> v128
  • f64x2.lt(a: v128, b: v128) -> v128

Less than or equal

  • i8x16.le_s(a: v128, b: v128) -> v128
  • i8x16.le_u(a: v128, b: v128) -> v128
  • i16x8.le_s(a: v128, b: v128) -> v128
  • i16x8.le_u(a: v128, b: v128) -> v128
  • i32x4.le_s(a: v128, b: v128) -> v128
  • i32x4.le_u(a: v128, b: v128) -> v128
  • i64x2.le_s(a: v128, b: v128) -> v128
  • f32x4.le(a: v128, b: v128) -> v128
  • f64x2.le(a: v128, b: v128) -> v128

Greater than

  • i8x16.gt_s(a: v128, b: v128) -> v128
  • i8x16.gt_u(a: v128, b: v128) -> v128
  • i16x8.gt_s(a: v128, b: v128) -> v128
  • i16x8.gt_u(a: v128, b: v128) -> v128
  • i32x4.gt_s(a: v128, b: v128) -> v128
  • i32x4.gt_u(a: v128, b: v128) -> v128
  • i64x2.gt_s(a: v128, b: v128) -> v128
  • f32x4.gt(a: v128, b: v128) -> v128
  • f64x2.gt(a: v128, b: v128) -> v128

Greater than or equal

  • i8x16.ge_s(a: v128, b: v128) -> v128
  • i8x16.ge_u(a: v128, b: v128) -> v128
  • i16x8.ge_s(a: v128, b: v128) -> v128
  • i16x8.ge_u(a: v128, b: v128) -> v128
  • i32x4.ge_s(a: v128, b: v128) -> v128
  • i32x4.ge_u(a: v128, b: v128) -> v128
  • i64x2.ge_s(a: v128, b: v128) -> v128
  • f32x4.ge(a: v128, b: v128) -> v128
  • f64x2.ge(a: v128, b: v128) -> v128

Load and store

Load and store operations are provided for the v128 vectors. The memory operations take the same arguments and have the same semantics as the existing scalar WebAssembly load and store instructions (see memarg. The difference is that the memory access size is 16 bytes which is also the natural alignment.

Load

  • v128.load(m: memarg) -> v128

Load a v128 vector from the given heap address.

def S.load(m: memarg):
    return S.from_bytes(memory[memarg.offset:memarg.offset + 16])

Load and Zero-Pad

  • v128.load32_zero(m: memarg) -> v128
  • v128.load64_zero(m: memarg) -> v128

Load a single 32-bit or 64-bit element into the lowest bits of a v128 vector, and initialize all other bits of the v128 vector to zero.

def S.load32_zero(m: memarg):
    return S.from_bytes(memory[memarg.offset:memarg.offset + 4])
def S.load64_zero(m: memarg):
    return S.from_bytes(memory[memarg.offset:memarg.offset + 8])

Load and Splat

  • v128.load8_splat(m: memarg) -> v128
  • v128.load16_splat(m: memarg) -> v128
  • v128.load32_splat(m: memarg) -> v128
  • v128.load64_splat(m: memarg) -> v128

Load a single element and splat to all lanes of a v128 vector. The natural alignment is the size of the element loaded.

def S.load_splat(m: memarg):
    val_bytes = memory[memarg.offset:memarg.offset + S.LaneBytes])
    return S.splat(S.LaneType.from_bytes(val_bytes))

Load Lane

  • v128.load8_lane(m: memarg, x: v128, imm: ImmLaneIdx16) -> v128
  • v128.load16_lane(m: memarg, x: v128, imm: ImmLaneIdx8) -> v128
  • v128.load32_lane(m: memarg, x: v128, imm: ImmLaneIdx4) -> v128
  • v128.load64_lane(m: memarg, x: v128, imm: ImmLaneIdx2) -> v128

Load a single element from m into the lane of x specified in the immediate mode operand imm. The values of all other lanes of x are bypassed as is.

Load and Extend

  • v128.load8x8_s(m: memarg) -> v128: load eight 8-bit integers and sign extend each one to a 16-bit lane
  • v128.load8x8_u(m: memarg) -> v128: load eight 8-bit integers and zero extend each one to a 16-bit lane
  • v128.load16x4_s(m: memarg) -> v128: load four 16-bit integers and sign extend each one to a 32-bit lane
  • v128.load16x4_u(m: memarg) -> v128: load four 16-bit integers and zero extend each one to a 32-bit lane
  • v128.load32x2_s(m: memarg) -> v128: load two 32-bit integers and sign extend each one to a 64-bit lane
  • v128.load32x2_u(m: memarg) -> v128: load two 32-bit integers and zero extend each one to a 64-bit lane

Fetch consecutive integers up to 32-bit wide and produce a vector with lanes up to 64 bits. The natural alignment is 8 bytes.

def S.load_extend(ext, m: memarg):
    result = S.New()
    bytes = memory[memarg.offset:memarg.offset + 8])
    for i in range(S.Lanes):
        result[i] = ext(S.LaneType.from_bytes(bytes[(i * S.LaneBytes/2):((i+1) * S.LaneBytes/2)]))
    return result

def S.load_extend_s(m: memarg):
    return S.load_extend(Sext, memarg)

def S.load_extend_u(m: memarg):
    return S.load_extend(Zext, memarg)

Store

  • v128.store(m: memarg, data: v128)

Store a v128 vector to the given heap address.

def S.store(m: memarg, a):
    memory[memarg.offset:memarg.offset + 16] = bytes(a)

Store Lane

  • v128.store8_lane(m: memarg, data: v128, imm: ImmLaneIdx16)
  • v128.store16_lane(m: memarg, data: v128, imm: ImmLaneIdx8)
  • v128.store32_lane(m: memarg, data: v128, imm: ImmLaneIdx4)
  • v128.store64_lane(m: memarg, data: v128, imm: ImmLaneIdx2)

Store into m the lane of data specified in the immediate mode operand imm.

Floating-point sign bit operations

These floating point operations are simple manipulations of the sign bit. No changes are made to the exponent or trailing significand bits, even for NaN inputs.

Negation

  • f32x4.neg(a: v128) -> v128
  • f64x2.neg(a: v128) -> v128

Apply the IEEE negate(x) function to each lane. This simply inverts the sign bit, preserving all other bits.

def S.neg(a):
    return S.lanewise_unary(ieee.negate, a)

Floating-point absolute value

  • f32x4.abs(a: v128) -> v128
  • f64x2.abs(a: v128) -> v128

Apply the IEEE abs(x) function to each lane. This simply clears the sign bit, preserving all other bits.

def S.abs(a):
    return S.lanewise_unary(ieee.abs, a)

Floating-point min and max

These operations are not part of the IEEE 754-2008 standard. They are lane-wise versions of the existing scalar WebAssembly operations.

NaN-propagating minimum

  • f32x4.min(a: v128, b: v128) -> v128
  • f64x2.min(a: v128, b: v128) -> v128

Lane-wise minimum value, propagating NaNs.

NaN-propagating maximum

  • f32x4.max(a: v128, b: v128) -> v128
  • f64x2.max(a: v128, b: v128) -> v128

Lane-wise maximum value, propagating NaNs.

Pseudo-minimum

  • f32x4.pmin(a: v128, b: v128) -> v128
  • f64x2.pmin(a: v128, b: v128) -> v128

Lane-wise minimum value, defined as b < a ? b : a.

Pseudo-maximum

  • f32x4.pmax(a: v128, b: v128) -> v128
  • f64x2.pmax(a: v128, b: v128) -> v128

Lane-wise maximum value, defined as a < b ? b : a.

Floating-point arithmetic

The floating-point arithmetic operations are all lane-wise versions of the existing scalar WebAssembly operations.

Addition

  • f32x4.add(a: v128, b: v128) -> v128
  • f64x2.add(a: v128, b: v128) -> v128

Lane-wise IEEE addition.

Subtraction

  • f32x4.sub(a: v128, b: v128) -> v128
  • f64x2.sub(a: v128, b: v128) -> v128

Lane-wise IEEE subtraction.

Division

  • f32x4.div(a: v128, b: v128) -> v128
  • f64x2.div(a: v128, b: v128) -> v128

Lane-wise IEEE division.

Multiplication

  • f32x4.mul(a: v128, b: v128) -> v128
  • f64x2.mul(a: v128, b: v128) -> v128

Lane-wise IEEE multiplication.

Square root

  • f32x4.sqrt(a: v128) -> v128
  • f64x2.sqrt(a: v128) -> v128

Lane-wise IEEE squareRoot.

Round to integer above (ceiling)

  • f32x4.ceil(a: v128) -> v128
  • f64x2.ceil(a: v128) -> v128

Lane-wise rounding to the nearest integral value not smaller than the input.

Round to integer below (floor)

  • f32x4.floor(a: v128) -> v128
  • f64x2.floor(a: v128) -> v128

Lane-wise rounding to the nearest integral value not greater than the input.

Round to integer toward zero (truncate to integer)

  • f32x4.trunc(a: v128) -> v128
  • f64x2.trunc(a: v128) -> v128

Lane-wise rounding to the nearest integral value with the magnitude not larger than the input.

Round to nearest integer, ties to even

  • f32x4.nearest(a: v128) -> v128
  • f64x2.nearest(a: v128) -> v128

Lane-wise rounding to the nearest integral value; if two values are equally near, rounds to the even one.

Conversions

Integer to single-precision floating point

  • f32x4.convert_i32x4_s(a: v128) -> v128
  • f32x4.convert_i32x4_u(a: v128) -> v128

Lane-wise conversion from integer to floating point. Integer values not representable as single-precision floating-point numbers will be rounded to the nearest-even representable number.

Integer to double-precision floating point

  • f64x2.convert_low_i32x4_s(a: v128) -> v128
  • f64x2.convert_low_i32x4_u(a: v128) -> v128

Lane-wise conversion from integer to floating point.

Single-precision floating point to integer with saturation

  • i32x4.trunc_sat_f32x4_s(a: v128) -> v128
  • i32x4.trunc_sat_f32x4_u(a: v128) -> v128

Lane-wise saturating conversion from single-precision floating point to integer using the IEEE convertToIntegerTowardZero function. If any input lane is a NaN, the resulting lane is 0. If the rounded integer value of a lane is outside the range of the destination type, the result is saturated to the nearest representable integer value.

Double-precision floating point to integer with saturation

  • i32x4.trunc_sat_f64x2_s_zero(a: v128) -> v128
  • i32x4.trunc_sat_f64x2_u_zero(a: v128) -> v128

Saturating conversion of the two double-precision floating point lanes to two lower integer lanes using the IEEE convertToIntegerTowardZero function. The two higher lanes of the result are initialized to zero. If any input lane is a NaN, the resulting lane is 0. If the rounded integer value of a lane is outside the range of the destination type, the result is saturated to the nearest representable integer value.

Double-precision floating point to single-precision

  • f32x4.demote_f64x2_zero(a: v128) -> v128

Conversion of the two double-precision floating point lanes to two lower single-precision lanes of the result. The two higher lanes of the result are initialized to zero. If the conversion result is not representable as a single-precision floating point number, it is rounded to the nearest-even representable number.

Single-precision floating point to double-precision

  • f64x2.promote_low_f32x4(a: v128) -> v128

Conversion of the two lower single-precision floating point lanes to the two double-precision lanes of the result.

Integer to integer narrowing

  • i8x16.narrow_i16x8_s(a: v128, b: v128) -> v128
  • i8x16.narrow_i16x8_u(a: v128, b: v128) -> v128
  • i16x8.narrow_i32x4_s(a: v128, b: v128) -> v128
  • i16x8.narrow_i32x4_u(a: v128, b: v128) -> v128

Converts two input vectors into a smaller lane vector by narrowing each lane, signed or unsigned. The signed narrowing operation will use signed saturation to handle overflow, 0x7f or 0x80 for i8x16, the unsigned narrowing operation will use unsigned saturation to handle overflow, 0x00 or 0xff for i8x16. Regardless of the whether the operation is signed or unsigned, the input lanes are interpreted as signed integers.

def S.narrow_T_s(a, b):
    result = S.New()
    for i in range(T.Lanes):
        result[i] = S.SignedSaturate(a[i])
    for i in range(T.Lanes):
        result[T.Lanes + i] = S.SignedSaturate(b[i])
    return result

def S.narrow_T_u(a, b):
    result = S.New()
    for i in range(T.Lanes):
        result[i] = S.UnsignedSaturate(a[i])
    for i in range(T.Lanes):
        result[T.Lanes + i] = S.UnsignedSaturate(b[i])
    return result

Integer to integer extension

  • i16x8.extend_low_i8x16_s(a: v128) -> v128
  • i16x8.extend_high_i8x16_s(a: v128) -> v128
  • i16x8.extend_low_i8x16_u(a: v128) -> v128
  • i16x8.extend_high_i8x16_u(a: v128) -> v128
  • i32x4.extend_low_i16x8_s(a: v128) -> v128
  • i32x4.extend_high_i16x8_s(a: v128) -> v128
  • i32x4.extend_low_i16x8_u(a: v128) -> v128
  • i32x4.extend_high_i16x8_u(a: v128) -> v128
  • i64x2.extend_low_i32x4_s(a: v128) -> v128
  • i64x2.extend_high_i32x4_s(a: v128) -> v128
  • i64x2.extend_low_i32x4_u(a: v128) -> v128
  • i64x2.extend_high_i32x4_u(a: v128) -> v128

Converts low or high half of the smaller lane vector to a larger lane vector, sign extended or zero (unsigned) extended.

def S.extend_low_T(ext, a):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = ext(a[i])

def S.extend_high_T(ext, a):
    result = S.New()
    for i in range(S.Lanes):
        result[i] = ext(a[S.Lanes + i])

def S.extend_low_T_s(a):
    return S.extend_low_T(Sext, a)

def S.extend_high_T_s(a):
    return S.extend_high_T(Sext, a)

def S.extend_low_T_u(a):
    return S.extend_low_T(Zext, a)

def S.extend_high_T_u(a):
    return S.extend_high_T(Zext, a)