Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 1.71 KB

README.md

File metadata and controls

44 lines (33 loc) · 1.71 KB

This is MaskRCNN model trained for blurring advertising on the streets. From https://github.com/matterport/Mask_RCNN.git

Examples

accessibility text accessibility text accessibility text accessibility text accessibility text

[Video](https://www.youtube.com/watch?v=xQUpQzeStmQ)

Getting Started

  • blur.py Using a model pre-trained on custom dataset to segment and blur objects in your own images or video.
# Detect and blur image or video

python3 blur.py (--image_path=/path/to/image.jpg | --video_path=/path/to/video.mp4) --model=/path/to/weigth.h5 
  • You can download dataset annotation to train your own model, the dataset consists of photos from Google street view. dataset

Requirements

Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt.

Installation

  1. Clone this repository
  2. Install dependencies
    pip3 install -r requirements.txt
  3. Run setup from the repository root directory
    python3 setup.py install
  4. Download pre-trained weights (mask_rcnn_ad.h5) from the releases page.