Skip to content

Tylersuard/hierarchical-transformers

 
 

Repository files navigation

Hierarchical Attention Transformers (HATs)

Implementation of Hierarchical Attention Transformers (HATs) presented in "An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification" of Chalkidis et al. (2022). HAT use a hierarchical attention scheme, which is a combination of segment-wise and cross-segment attention operations. You can think segments as paragraphs or sentences.

Citation

If you use HAT in your research, please cite:

An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification. Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint).

@misc{chalkidis-etal-2022-hat,
  url = {https://arxiv.org/abs/2210.05529},
  author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond},
  title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification},
  publisher = {arXiv},
  year = {2022},
}

Implementation Details

The repository supports several variants of the HAT architecture. The implementation of HAT is build on top of HuggingFace Transformers in Torch. The implementations is available at models/hat/modelling_hat.py. The layout of stacking segment-wise (SW) and cross-segment (CS) encoders is specified in the configuration file with the encoder_layout parameter.

  • Ad-Hoc (AH): An ad-hoc (partially pre-trained) HAT comprises an initial stack of shared L-SWE segment encoders from a pre-trained transformer-based model, followed by L-CSE ad-hoc segment-wise encoders. In this case the model initially encodes and contextualize token representations per segment, and then builds higher-order segment-level representationse.g., a 6-layer model has 12 effective transformer blocks (Layout: S/S/S/S/S/S/S/S/D/D/D/D).
"encoder_layout": {
"0": {"sentence_encoder": true, "document_encoder":  false},
"1": {"sentence_encoder": true, "document_encoder":  false},
"2": {"sentence_encoder": true, "document_encoder":  false},
"3": {"sentence_encoder": true, "document_encoder":  false},
"4": {"sentence_encoder": true, "document_encoder":  false},
"5": {"sentence_encoder": true, "document_encoder":  false},
"6": {"sentence_encoder": true, "document_encoder":  false},
"7": {"sentence_encoder": true, "document_encoder":  false},
"8": {"sentence_encoder": false, "document_encoder":  true},
"9": {"sentence_encoder": false, "document_encoder":  true},
"10": {"sentence_encoder": false, "document_encoder":  true},
"11": {"sentence_encoder": false, "document_encoder":  true}
}
  • Interleaved (I): An interleaved HAT comprises a stack of L paired segment-wise and cross-segment encoders. e.g., a 6-layer model has 12 effective transformer blocks (Layout: SD/SD/SD/SD/SD/SD).
"encoder_layout": {
"0": {"sentence_encoder": true, "document_encoder":  true},
"1": {"sentence_encoder": true, "document_encoder":  true},
"2": {"sentence_encoder": true, "document_encoder":  true},
"3": {"sentence_encoder": true, "document_encoder":  true},
"4": {"sentence_encoder": true, "document_encoder":  true},
"5": {"sentence_encoder": true, "document_encoder":  true}
}
  • Early-Contextualization (EC): n early-contextualized HAT comprises an initial stack of L-P paired segment-wise and cross-segment encoders, followed by a stack of L-SWE segment-wise encoders. In this case, cross-segment attention (contextualization) is only performed at the initial layers of the model,e.g., a 6-layer model and 8 effective transformer blocks (Layout: SD/SD/S/S/S/S).
"encoder_layout": {
"0": {"sentence_encoder": true, "document_encoder":  true},
"1": {"sentence_encoder": true, "document_encoder":  true},
"2": {"sentence_encoder": true, "document_encoder":  false},
"3": {"sentence_encoder": true, "document_encoder":  false},
"4": {"sentence_encoder": true, "document_encoder":  false},
"5": {"sentence_encoder": true, "document_encoder":  false}
}
  • Late-Contextualization (LC): A late-contextualized HAT comprises an initial stack of $L_{\mathrm{SWE}}$ segment-wise encoders, followed by a stack of $L_{\mathrm{P}}$ paired segment and segment-wise encoders. In this case, cross-segment attention (contextualization) is only performed in the latter layers of the model, e.g., a 6-layer model and 8 effective transformer blocks (Layout: S/S/S/S/SD/SD).
"encoder_layout": {
"0": {"sentence_encoder": true, "document_encoder":  false},
"1": {"sentence_encoder": true, "document_encoder":  false},
"2": {"sentence_encoder": true, "document_encoder":  false},
"3": {"sentence_encoder": true, "document_encoder":  false},
"4": {"sentence_encoder": true, "document_encoder":  true},
"5": {"sentence_encoder": true, "document_encoder":  true}
}

In thi study, we examine the efficacy of 8 alternative layouts:

{
'I1': 'SD|SD|SD|SD|SD|SD',
'I2': 'S|SD|D|S|SD|D|S|SD|D',
'I3': 'S|SD|S|SD|S|SD|S|SD',
'LC1': 'S|S|S|S|S|S|SD|SD|SD',
'LC2': 'S|S|S|S|S|SD|D|S|SD|D',
'EC1': 'S|S|SD|D|S|SD|D|S|S|S',
'EC2': 'S|S|SD|SD|SD|S|S|S|S',
'AH':  'S|S|S|S|S|S|S|S|S|S|S|S',
}

Available Models on HuggingFace Hub

Model Name Layers Hidden Units Attention Heads Vocab Parameters
kiddothe2b/hierarchical-transformer-base-4096 16 768 12 50K 152M
kiddothe2b/longformer-base-4096 12 768 12 50K 152M
kiddothe2b/adhoc-hierarchical-transformer-base-4096 16 768 12 50K 140M
kiddothe2b/adhoc-hierarchical-transformer-I1-mini-1024 12 256 4 32K 18M
kiddothe2b/adhoc-hierarchical-transformer-I3-mini-1024 12 256 4 32K 18M
kiddothe2b/adhoc-hierarchical-transformer-LC1-mini-1024 12 256 4 32K 18M
kiddothe2b/adhoc-hierarchical-transformer-EC2-mini-1024 12 256 4 32K 18M
kiddothe2b/longformer-mini-1024 6 256 4 32K 14M

Requirements

Make sure that all required packages are installed:

torch>=1.11.0
transformers>=4.18.0
datasets>=2.0.0
tokenizers>=0.11.0
scikit-learn>=1.0.0
tqdm>=4.62.0
nltk>=3.7.0

How to run experiments?

You can use the shell scripts provided in the running_scripts directory to pre-train new models or fine-tune the ones released.

Try on Google Colab: https://colab.research.google.com/drive/15feh49wqBshgkcvbO6QypvJoa3dG6P5S?usp=sharing

I still have open questions...

Please post your question on Discussions section or communicate with the corresponding author via e-mail.

About

Hierarchical Attention Transformers (HAT)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • Shell 2.0%