-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
45 lines (36 loc) · 1.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
import argparse
from attacks.attack_0 import attack0
from attacks.attack_1 import attack1
from attacks.attack_2 import attack2
from attacks.attack_3 import attack3
from attacks.attack_4 import attack4
from attacks.attack_5 import attack5
from attacks.attack_6 import attack6
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=None, help="To use cuda, set \
to a specific GPU ID. Default set to use CPU.")
parser.add_argument('--attack_type', type=int, default=2,
help="int id of attack type")
parser.add_argument('--dataset', type=str, default='citeseer',
help="Dataset for the target model: (cora, citeseer, pubmed)")
parser.add_argument('--attack_node', type=float, default=0.25,
help='proportion of the attack nodes')
parser.add_argument('--shadow_dataset_size', type=float, default=1,
help='size of the shadow datasets')
args = parser.parse_args()
print(args.attack_node)
if args.attack_type == 0:
attack0(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 1:
attack1(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 2:
attack2(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 3:
attack3(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 4:
attack4(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 5:
attack5(args.dataset, args.attack_node,args.gpu)
if args.attack_type == 6:
attack6(args.dataset, args.attack_node,args.gpu)