// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
#include "allocators.h"
#include "serialize.h"
#include "uint256.h"
#include
#include
class CPubKey;
struct CExtPubKey;
/**
* secp256k1:
* const unsigned int PRIVATE_KEY_SIZE = 279;
* const unsigned int PUBLIC_KEY_SIZE = 65;
* const unsigned int SIGNATURE_SIZE = 72;
*
* see www.keylength.com
* script supports up to 75 for single byte push
*/
/**
* secure_allocator is defined in allocators.h
* CPrivKey is a serialized private key, with all parameters included (279 bytes)
*/
typedef std::vector > CPrivKey;
/** An encapsulated private key. */
class CKey
{
private:
//! Whether this private key is valid. We check for correctness when modifying the key
//! data, so fValid should always correspond to the actual state.
bool fValid;
//! Whether the public key corresponding to this private key is (to be) compressed.
bool fCompressed;
//! The actual byte data
unsigned char vch[32];
//! Check whether the 32-byte array pointed to be vch is valid keydata.
bool static Check(const unsigned char* vch);
public:
//! Construct an invalid private key.
CKey() : fValid(false), fCompressed(false)
{
LockObject(vch);
}
//! Copy constructor. This is necessary because of memlocking.
CKey(const CKey& secret) : fValid(secret.fValid), fCompressed(secret.fCompressed)
{
LockObject(vch);
memcpy(vch, secret.vch, sizeof(vch));
}
//! Destructor (again necessary because of memlocking).
~CKey()
{
UnlockObject(vch);
}
friend bool operator==(const CKey& a, const CKey& b)
{
return a.fCompressed == b.fCompressed && a.size() == b.size() &&
memcmp(&a.vch[0], &b.vch[0], a.size()) == 0;
}
//! Initialize using begin and end iterators to byte data.
template
void Set(const T pbegin, const T pend, bool fCompressedIn)
{
if (pend - pbegin != 32) {
fValid = false;
return;
}
if (Check(&pbegin[0])) {
memcpy(vch, (unsigned char*)&pbegin[0], 32);
fValid = true;
fCompressed = fCompressedIn;
} else {
fValid = false;
}
}
//! Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? 32 : 0); }
const unsigned char* begin() const { return vch; }
const unsigned char* end() const { return vch + size(); }
//! Check whether this private key is valid.
bool IsValid() const { return fValid; }
//! Check whether the public key corresponding to this private key is (to be) compressed.
bool IsCompressed() const { return fCompressed; }
//! Initialize from a CPrivKey (serialized OpenSSL private key data).
bool SetPrivKey(const CPrivKey& vchPrivKey, bool fCompressed);
//! Generate a new private key using a cryptographic PRNG.
void MakeNewKey(bool fCompressed);
/**
* Convert the private key to a CPrivKey (serialized OpenSSL private key data).
* This is expensive.
*/
CPrivKey GetPrivKey() const;
/**
* Compute the public key from a private key.
* This is expensive.
*/
CPubKey GetPubKey() const;
/**
* Create a DER-serialized signature.
* The test_case parameter tweaks the deterministic nonce, and is only for
* testing. It should be zero for normal use.
*/
bool Sign(const uint256& hash, std::vector& vchSig, uint32_t test_case = 0) const;
/**
* Create a compact signature (65 bytes), which allows reconstructing the used public key.
* The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
* The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
* 0x1D = second key with even y, 0x1E = second key with odd y,
* add 0x04 for compressed keys.
*/
bool SignCompact(const uint256& hash, std::vector& vchSig) const;
//! Derive BIP32 child key.
bool Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const;
/**
* Verify thoroughly whether a private key and a public key match.
* This is done using a different mechanism than just regenerating it.
*/
bool VerifyPubKey(const CPubKey& vchPubKey) const;
//! Load private key and check that public key matches.
bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck);
//! Check whether an element of a signature (r or s) is valid.
static bool CheckSignatureElement(const unsigned char* vch, int len, bool half);
};
struct CExtKey {
unsigned char nDepth;
unsigned char vchFingerprint[4];
unsigned int nChild;
unsigned char vchChainCode[32];
CKey key;
friend bool operator==(const CExtKey& a, const CExtKey& b)
{
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.key == b.key;
}
void Encode(unsigned char code[74]) const;
void Decode(const unsigned char code[74]);
bool Derive(CExtKey& out, unsigned int nChild) const;
CExtPubKey Neuter() const;
void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
};
/** Check that required EC support is available at runtime */
bool ECC_InitSanityCheck(void);
#endif // BITCOIN_KEY_H