-
Notifications
You must be signed in to change notification settings - Fork 29
/
main.cpp
4628 lines (4000 loc) · 178 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "arith_uint256.h"
#include "addrman.h"
#include "alert.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "init.h"
#include "merkleblock.h"
#include "net.h"
#include "pow.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
#include "undo.h"
#include "util.h"
#include "utilmoneystr.h"
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/thread.hpp>
using namespace std;
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
/**
* Global state
*/
CCriticalSection cs_main;
BlockMap mapBlockIndex;
CChain chainActive;
CBlockIndex *pindexBestHeader = NULL;
int64_t nTimeBestReceived = 0;
CWaitableCriticalSection csBestBlock;
CConditionVariable cvBlockChange;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fTxIndex = false;
bool fIsBareMultisigStd = true;
unsigned int nCoinCacheSize = 5000;
/** Fees smaller than this (in satoshi) are considered zero fee (for relaying and mining) */
CFeeRate minRelayTxFee = CFeeRate(1000);
CTxMemPool mempool(::minRelayTxFee);
struct COrphanTx {
CTransaction tx;
NodeId fromPeer;
};
map<uint256, COrphanTx> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
void EraseOrphansFor(NodeId peer);
/**
* Returns true if there are nRequired or more blocks of minVersion or above
* in the last Params().ToCheckBlockUpgradeMajority() blocks, starting at pstart
* and going backwards.
*/
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired);
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
struct CBlockIndexWorkComparator
{
bool operator()(CBlockIndex *pa, CBlockIndex *pb) {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS or better that are at least
* as good as our current tip. Entries may be failed, though.
*/
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexCandidates;
/** Number of nodes with fSyncStarted. */
int nSyncStarted = 0;
/** All pairs A->B, where A (or one if its ancestors) misses transactions, but B has transactions. */
multimap<CBlockIndex*, CBlockIndex*> mapBlocksUnlinked;
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
int nLastBlockFile = 0;
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
uint32_t nBlockSequenceId = 1;
/**
* Sources of received blocks, to be able to send them reject messages or ban
* them, if processing happens afterwards. Protected by cs_main.
*/
map<uint256, NodeId> mapBlockSource;
/** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */
struct QueuedBlock {
uint256 hash;
CBlockIndex *pindex; //! Optional.
int64_t nTime; //! Time of "getdata" request in microseconds.
int nValidatedQueuedBefore; //! Number of blocks queued with validated headers (globally) at the time this one is requested.
bool fValidatedHeaders; //! Whether this block has validated headers at the time of request.
};
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> > mapBlocksInFlight;
/** Number of blocks in flight with validated headers. */
int nQueuedValidatedHeaders = 0;
/** Number of preferable block download peers. */
int nPreferredDownload = 0;
/** Dirty block index entries. */
set<CBlockIndex*> setDirtyBlockIndex;
/** Dirty block file entries. */
set<int> setDirtyFileInfo;
} // anon namespace
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
namespace {
struct CMainSignals {
/** Notifies listeners of updated transaction data (transaction, and optionally the block it is found in. */
boost::signals2::signal<void (const CTransaction &, const CBlock *)> SyncTransaction;
/** Notifies listeners of an erased transaction (currently disabled, requires transaction replacement). */
boost::signals2::signal<void (const uint256 &)> EraseTransaction;
/** Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible). */
boost::signals2::signal<void (const uint256 &)> UpdatedTransaction;
/** Notifies listeners of a new active block chain. */
boost::signals2::signal<void (const CBlockLocator &)> SetBestChain;
/** Notifies listeners about an inventory item being seen on the network. */
boost::signals2::signal<void (const uint256 &)> Inventory;
/** Tells listeners to broadcast their data. */
boost::signals2::signal<void ()> Broadcast;
/** Notifies listeners of a block validation result */
boost::signals2::signal<void (const CBlock&, const CValidationState&)> BlockChecked;
} g_signals;
} // anon namespace
void RegisterValidationInterface(CValidationInterface* pwalletIn) {
g_signals.SyncTransaction.connect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2));
g_signals.EraseTransaction.connect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1));
g_signals.UpdatedTransaction.connect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.SetBestChain.connect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1));
g_signals.Inventory.connect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1));
g_signals.Broadcast.connect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn));
g_signals.BlockChecked.connect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2));
}
void UnregisterValidationInterface(CValidationInterface* pwalletIn) {
g_signals.BlockChecked.disconnect(boost::bind(&CValidationInterface::BlockChecked, pwalletIn, _1, _2));
g_signals.Broadcast.disconnect(boost::bind(&CValidationInterface::ResendWalletTransactions, pwalletIn));
g_signals.Inventory.disconnect(boost::bind(&CValidationInterface::Inventory, pwalletIn, _1));
g_signals.SetBestChain.disconnect(boost::bind(&CValidationInterface::SetBestChain, pwalletIn, _1));
g_signals.UpdatedTransaction.disconnect(boost::bind(&CValidationInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.EraseTransaction.disconnect(boost::bind(&CValidationInterface::EraseFromWallet, pwalletIn, _1));
g_signals.SyncTransaction.disconnect(boost::bind(&CValidationInterface::SyncTransaction, pwalletIn, _1, _2));
}
void UnregisterAllValidationInterfaces() {
g_signals.BlockChecked.disconnect_all_slots();
g_signals.Broadcast.disconnect_all_slots();
g_signals.Inventory.disconnect_all_slots();
g_signals.SetBestChain.disconnect_all_slots();
g_signals.UpdatedTransaction.disconnect_all_slots();
g_signals.EraseTransaction.disconnect_all_slots();
g_signals.SyncTransaction.disconnect_all_slots();
}
void SyncWithWallets(const CTransaction &tx, const CBlock *pblock) {
g_signals.SyncTransaction(tx, pblock);
}
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
namespace {
struct CBlockReject {
unsigned char chRejectCode;
string strRejectReason;
uint256 hashBlock;
};
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
struct CNodeState {
//! Accumulated misbehaviour score for this peer.
int nMisbehavior;
//! Whether this peer should be disconnected and banned (unless whitelisted).
bool fShouldBan;
//! String name of this peer (debugging/logging purposes).
std::string name;
//! List of asynchronously-determined block rejections to notify this peer about.
std::vector<CBlockReject> rejects;
//! The best known block we know this peer has announced.
CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
uint256 hashLastUnknownBlock;
//! The last full block we both have.
CBlockIndex *pindexLastCommonBlock;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! Since when we're stalling block download progress (in microseconds), or 0.
int64_t nStallingSince;
list<QueuedBlock> vBlocksInFlight;
int nBlocksInFlight;
//! Whether we consider this a preferred download peer.
bool fPreferredDownload;
CNodeState() {
nMisbehavior = 0;
fShouldBan = false;
pindexBestKnownBlock = NULL;
hashLastUnknownBlock.SetNull();
pindexLastCommonBlock = NULL;
fSyncStarted = false;
nStallingSince = 0;
nBlocksInFlight = 0;
fPreferredDownload = false;
}
};
/** Map maintaining per-node state. Requires cs_main. */
map<NodeId, CNodeState> mapNodeState;
// Requires cs_main.
CNodeState *State(NodeId pnode) {
map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end())
return NULL;
return &it->second;
}
int GetHeight()
{
LOCK(cs_main);
return chainActive.Height();
}
void UpdatePreferredDownload(CNode* node, CNodeState* state)
{
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient;
nPreferredDownload += state->fPreferredDownload;
}
void InitializeNode(NodeId nodeid, const CNode *pnode) {
LOCK(cs_main);
CNodeState &state = mapNodeState.insert(std::make_pair(nodeid, CNodeState())).first->second;
state.name = pnode->addrName;
}
void FinalizeNode(NodeId nodeid) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state->fSyncStarted)
nSyncStarted--;
BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight)
mapBlocksInFlight.erase(entry.hash);
EraseOrphansFor(nodeid);
nPreferredDownload -= state->fPreferredDownload;
mapNodeState.erase(nodeid);
}
// Requires cs_main.
void MarkBlockAsReceived(const uint256& hash) {
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
nQueuedValidatedHeaders -= itInFlight->second.second->fValidatedHeaders;
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
}
}
// Requires cs_main.
void MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, CBlockIndex *pindex = NULL) {
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
QueuedBlock newentry = {hash, pindex, GetTimeMicros(), nQueuedValidatedHeaders, pindex != NULL};
nQueuedValidatedHeaders += newentry.fValidatedHeaders;
list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(), newentry);
state->nBlocksInFlight++;
mapBlocksInFlight[hash] = std::make_pair(nodeid, it);
}
/** Check whether the last unknown block a peer advertized is not yet known. */
void ProcessBlockAvailability(NodeId nodeid) {
CNodeState *state = State(nodeid);
assert(state != NULL);
if (!state->hashLastUnknownBlock.IsNull()) {
BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock);
if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) {
if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = itOld->second;
state->hashLastUnknownBlock.SetNull();
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
CNodeState *state = State(nodeid);
assert(state != NULL);
ProcessBlockAvailability(nodeid);
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end() && it->second->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = it->second;
} else {
// An unknown block was announced; just assume that the latest one is the best one.
state->hashLastUnknownBlock = hash;
}
}
/** Find the last common ancestor two blocks have.
* Both pa and pb must be non-NULL. */
CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) {
if (pa->nHeight > pb->nHeight) {
pa = pa->GetAncestor(pb->nHeight);
} else if (pb->nHeight > pa->nHeight) {
pb = pb->GetAncestor(pa->nHeight);
}
while (pa != pb && pa && pb) {
pa = pa->pprev;
pb = pb->pprev;
}
// Eventually all chain branches meet at the genesis block.
assert(pa == pb);
return pa;
}
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
* at most count entries. */
void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<CBlockIndex*>& vBlocks, NodeId& nodeStaller) {
if (count == 0)
return;
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == NULL) {
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
// Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
// of their current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
return;
std::vector<CBlockIndex*> vToFetch;
CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
// download that next block if the window were 1 larger.
int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
// as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
// are not yet downloaded and not in flight to vBlocks. In the mean time, update
// pindexLastCommonBlock as long as all ancestors are already downloaded.
BOOST_FOREACH(CBlockIndex* pindex, vToFetch) {
if (!pindex->IsValid(BLOCK_VALID_TREE)) {
// We consider the chain that this peer is on invalid.
return;
}
if (pindex->nStatus & BLOCK_HAVE_DATA) {
if (pindex->nChainTx)
state->pindexLastCommonBlock = pindex;
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // anon namespace
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
stats.nMisbehavior = state->nMisbehavior;
stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) {
if (queue.pindex)
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
return true;
}
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.connect(&GetHeight);
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
nodeSignals.InitializeNode.connect(&InitializeNode);
nodeSignals.FinalizeNode.connect(&FinalizeNode);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.GetHeight.disconnect(&GetHeight);
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
nodeSignals.InitializeNode.disconnect(&InitializeNode);
nodeSignals.FinalizeNode.disconnect(&FinalizeNode);
}
CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, locator.vHave) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (chain.Contains(pindex))
return pindex;
}
}
return chain.Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx, NodeId peer)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz > 5000)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString());
return false;
}
mapOrphanTransactions[hash].tx = tx;
mapOrphanTransactions[hash].fromPeer = peer;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
LogPrint("mempool", "stored orphan tx %s (mapsz %u prevsz %u)\n", hash.ToString(),
mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return;
BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin)
{
map<uint256, set<uint256> >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(hash);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
}
void EraseOrphansFor(NodeId peer)
{
int nErased = 0;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
EraseOrphanTx(maybeErase->second.tx.GetHash());
++nErased;
}
}
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
bool IsStandardTx(const CTransaction& tx, string& reason)
{
if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) {
reason = "version";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz >= MAX_STANDARD_TX_SIZE) {
reason = "tx-size";
return false;
}
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed
// keys. (remember the 520 byte limit on redeemScript size) That works
// out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)+3=1627
// bytes of scriptSig, which we round off to 1650 bytes for some minor
// future-proofing. That's also enough to spend a 20-of-20
// CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not
// considered standard)
if (txin.scriptSig.size() > 1650) {
reason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
reason = "scriptsig-not-pushonly";
return false;
}
}
unsigned int nDataOut = 0;
txnouttype whichType;
BOOST_FOREACH(const CTxOut& txout, tx.vout) {
if (!::IsStandard(txout.scriptPubKey, whichType)) {
reason = "scriptpubkey";
return false;
}
if (whichType == TX_NULL_DATA)
nDataOut++;
else if ((whichType == TX_MULTISIG) && (!fIsBareMultisigStd)) {
reason = "bare-multisig";
return false;
} else if (txout.IsDust(::minRelayTxFee)) {
reason = "dust";
return false;
}
}
// only one OP_RETURN txout is permitted
if (nDataOut > 1) {
reason = "multi-op-return";
return false;
}
return true;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
AssertLockHeld(cs_main);
// Time based nLockTime implemented in 0.1.6
if (tx.nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = chainActive.Height();
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (!txin.IsFinal())
return false;
return true;
}
/**
* Check transaction inputs to mitigate two
* potential denial-of-service attacks:
*
* 1. scriptSigs with extra data stuffed into them,
* not consumed by scriptPubKey (or P2SH script)
* 2. P2SH scripts with a crazy number of expensive
* CHECKSIG/CHECKMULTISIG operations
*/
bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs)
{
if (tx.IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut& prev = mapInputs.GetOutputFor(tx.vin[i]);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig
// IsStandardTx() will have already returned false
// and this method isn't called.
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker()))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (Solver(subscript, whichType2, vSolutions2))
{
int tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
else
{
// Any other Script with less than 15 sigops OK:
unsigned int sigops = subscript.GetSigOpCount(true);
// ... extra data left on the stack after execution is OK, too:
return (sigops <= MAX_P2SH_SIGOPS);
}
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state)
{
// Basic checks that don't depend on any context
if (tx.vin.empty())
return state.DoS(10, error("CheckTransaction(): vin empty"),
REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty())
return state.DoS(10, error("CheckTransaction(): vout empty"),
REJECT_INVALID, "bad-txns-vout-empty");
// Size limits
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckTransaction(): size limits failed"),
REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
CAmount nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, error("CheckTransaction(): txout.nValue negative"),
REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, error("CheckTransaction(): txout.nValue too high"),
REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, error("CheckTransaction(): txout total out of range"),
REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (vInOutPoints.count(txin.prevout))
return state.DoS(100, error("CheckTransaction(): duplicate inputs"),
REJECT_INVALID, "bad-txns-inputs-duplicate");
vInOutPoints.insert(txin.prevout);
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, error("CheckTransaction(): coinbase script size"),
REJECT_INVALID, "bad-cb-length");
}
else
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, error("CheckTransaction(): prevout is null"),
REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
CAmount GetMinRelayFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree)
{
{
LOCK(mempool.cs);
uint256 hash = tx.GetHash();
double dPriorityDelta = 0;
CAmount nFeeDelta = 0;
mempool.ApplyDeltas(hash, dPriorityDelta, nFeeDelta);
if (dPriorityDelta > 0 || nFeeDelta > 0)
return 0;
}
CAmount nMinFee = ::minRelayTxFee.GetFee(nBytes);
if (fAllowFree)
{
// There is a free transaction area in blocks created by most miners,
// * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000
// to be considered to fall into this category. We don't want to encourage sending
// multiple transactions instead of one big transaction to avoid fees.
if (nBytes < (DEFAULT_BLOCK_PRIORITY_SIZE - 1000))
nMinFee = 0;
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, bool fRejectInsaneFee)
{
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!CheckTransaction(tx, state))
return error("AcceptToMemoryPool: CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, error("AcceptToMemoryPool: coinbase as individual tx"),
REJECT_INVALID, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
string reason;
if (Params().RequireStandard() && !IsStandardTx(tx, reason))
return state.DoS(0,
error("AcceptToMemoryPool: nonstandard transaction: %s", reason),
REJECT_NONSTANDARD, reason);
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
//
// However, IsFinalTx() is confusing... Without arguments, it uses
// chainActive.Height() to evaluate nLockTime; when a block is accepted,
// chainActive.Height() is set to the value of nHeight in the block.
// However, when IsFinalTx() is called within CBlock::AcceptBlock(), the
// height of the block *being* evaluated is what is used. Thus if we want
// to know if a transaction can be part of the *next* block, we need to
// call IsFinalTx() with one more than chainActive.Height().
//
// Timestamps on the other hand don't get any special treatment, because we
// can't know what timestamp the next block will have, and there aren't
// timestamp applications where it matters.
if (!IsFinalTx(tx, chainActive.Height() + 1))
return state.DoS(0,
error("AcceptToMemoryPool: non-final"),
REJECT_NONSTANDARD, "non-final");
// is it already in the memory pool?
uint256 hash = tx.GetHash();
if (pool.exists(hash))
return false;
// Check for conflicts with in-memory transactions
{
LOCK(pool.cs); // protect pool.mapNextTx
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (pool.mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(&dummy);
CAmount nValueIn = 0;
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(pcoinsTip, pool);
view.SetBackend(viewMemPool);
// do we already have it?
if (view.HaveCoins(hash))
return false;
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// only helps filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
}
// are the actual inputs available?
if (!view.HaveInputs(tx))
return state.Invalid(error("AcceptToMemoryPool: inputs already spent"),
REJECT_DUPLICATE, "bad-txns-inputs-spent");
// Bring the best block into scope
view.GetBestBlock();
nValueIn = view.GetValueIn(tx);