Skip to content

Latest commit

 

History

History

langchain_demo

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English | 中文

RAG Functionality

CodeGeeX4 supports RAG functionality and is compatible with the Langchain framework to achieve project-level retrieval Q&A.

Tutorial

1. Install Dependencies

Navigate to the langchain_demo directory and install the required packages.

cd langchain_demo
pip install -r requirements.txt

2. Configure Embedding API Key

This project uses the Embedding API from the Zhipu Open Platform for vectorization. Please register and obtain an API Key first. Then, configure the API Key in models/embedding.py. For more details, refer to https://open.bigmodel.cn/dev/api#text_embedding.

3. Generate Vector Data

python vectorize.py --workspace . --output_path vectors
>>> File vectorization completed, saved to vectors

4. Run the Q&A Script

python chat.py --vector_path vectors
>>> Running on local URL:  http://127.0.0.1:8080

Demo