// This file is used to set model zoo visibility on STM32Cube.AI Developer Cloud [ { "name": "./image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite", "description": "ST Efficientnet low complexity 128 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnet/README.md", "visible": true }, { "name": "./image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite", "description": "ST Efficientnet 224 low complexity trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnet/README.md", "visible": true }, { "name": "./image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx", "description": "Efficientnet v2 on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnetv2/README.md", "visible": true }, { "name": "./image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx", "description": "Efficientnet v2 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnetv2/README.md", "visible": true }, { "name": "./image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx", "description": "Efficientnet v2 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnetv2/README.md", "visible": true }, { "name": "./image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx", "description": "Efficientnet v2 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/efficientnetv2/README.md", "visible": true }, { "name": "./image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx", "description": "Efficientnet v2 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/efficientnetv2/README.md", "visible": false }, { "name": "./image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx", "description": "Efficientnet v2 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/efficientnetv2/README.md", "visible": false }, { "name": "./image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx", "description": "Efficientnet v2 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/efficientnetv2/README.md", "visible": false }, { "name": "./image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx", "description": "Efficientnet v2 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/efficientnetv2/README.md", "visible": false }, { "name": "./image_classification/fdmobilenet/ST_pretrainedmodel_public_dataset/food-101/fdmobilenet_0.25_128_tfs/fdmobilenet_0.25_128_tfs_int8.tflite", "description": "FdMobileNet 0.25 128 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/fdmobilenet/README.md", "visible": true }, { "name": "./image_classification/fdmobilenet/ST_pretrainedmodel_public_dataset/food-101/fdmobilenet_0.25_224_tfs/fdmobilenet_0.25_224_tfs_int8.tflite", "description": "FdMobileNet 0.25 224 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/fdmobilenet/README.md", "visible": true }, { "name": "./image_classification/fdmobilenet/ST_pretrainedmodel_public_dataset/food-101/st_fdmobilenet_v1_128_tfs/st_fdmobilenet_v1_128_tfs_int8.tflite", "description": "ST FdMobileNet 128 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/fdmobilenet/README.md", "visible": true }, { "name": "./image_classification/fdmobilenet/ST_pretrainedmodel_public_dataset/food-101/st_fdmobilenet_v1_224_tfs/st_fdmobilenet_v1_224_tfs_int8.tflite", "description": "ST FdMobileNet 224 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/fdmobilenet/README.md", "visible": true }, { "name": "./image_classification/stmnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite", "description": "ST MNIST trained from scratch on EMNIST-Byclass with 36 classes", "usecase": "image_classification", "dataset_used": "emnist_byclass", "readme": "./image_classification/stmnist/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite", "description": "MobileNetv1 0.25 96 trained with full fine tuning on flowers dataset with 5 classes", "usecase": "image_classification", "dataset_used": "flowers", "readme": "./image_classification/mobilenetv1/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite", "description": "MobileNetv1 0.25 96 grayscale trained from scratch on flowers dataset with 5 classes", "usecase": "image_classification", "dataset_used": "flowers", "readme": "./image_classification/mobilenetv1/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite", "description": "MobileNetv1 0.25 224 trained with full fine tuning on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv1/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite", "description": "MobileNetv1 0.5 224 trained with full fine tuning on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv1/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite", "description": "MobileNetv1 1.0 224 trained with full fine tuning on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv1/README.md", "visible": true }, { "name": "./image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite", "description": "MobileNetv1 1.0 224 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/mobilenetv1/README.md", "visible": false }, { "name": "./image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/person/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite", "description": "MobileNetv2 0.35 128 trained with full fine tuning on Person (derived from COCO-2014) with 2 classes", "usecase": "image_classification", "dataset_used": "person", "readme": "./image_classification/mobilenetv2/README.md", "visible": true }, { "name": "./image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_128_fft/mobilenet_v2_0.35_128_fft_int8.tflite", "description": "MobileNetv2 0.35 128 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv2/README.md", "visible": true }, { "name": "./image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_0.35_224_fft/mobilenet_v2_0.35_224_fft_int8.tflite", "description": "MobileNetv2 0.35 224 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv2/README.md", "visible": true }, { "name": "./image_classification/mobilenetv2/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v2_1.0_224_fft/mobilenet_v2_1.0_224_fft_int8.tflite", "description": "MobileNetv2 1.0 224 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/mobilenetv2/README.md", "visible": true }, { "name": "./image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.0_224/mobilenet_v2_1.0_224_int8.tflite", "description": "MobileNetv2 1.0 224 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/mobilenetv2/README.md", "visible": false }, { "name": "./image_classification/mobilenetv2/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_int8.tflite", "description": "MobileNetv2 1.4 224 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/mobilenetv2/README.md", "visible": false }, { "name": "./image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/resnet_v1_8_32_tfs/resnet_v1_8_32_tfs_int8.tflite", "description": "ST Hybrid ResNet 8 32 v1 trained from scratch on Cifar10 with 10 classes", "usecase": "image_classification", "dataset_used": "cifar10", "readme": "./image_classification/resnetv1/README.md", "visible": true }, { "name": "./image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v1_32_tfs/st_resnet_8_hybrid_v1_32_tfs.h5", "description": "ST Hybrid ResNet 8 32 v2 trained from scratch on Cifar10 with 10 classes", "usecase": "image_classification", "dataset_used": "cifar10", "readme": "./image_classification/resnetv1/README.md", "visible": true }, { "name": "./image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar10/st_resnet_8_hybrid_v2_32_tfs/st_resnet_8_hybrid_v2_32_tfs.h5", "description": "ResNetv1 8 32 trained from scratch on Cifar10 with 10 classes", "usecase": "image_classification", "dataset_used": "cifar10", "readme": "./image_classification/resnetv1/README.md", "visible": true }, { "name": "./image_classification/resnetv1/ST_pretrainedmodel_public_dataset/cifar100/resnet_v1_32_32_tfs/resnet_v1_32_32_tfs_int8.tflite", "description": "ResNetv1 32 32 trained from scratch on Cifar100 with 100 classes", "usecase": "image_classification", "dataset_used": "cifar100", "readme": "./image_classification/resnetv1/README.md", "visible": true }, { "name": "./image_classification/squeezenetv1.1/ST_pretrainedmodel_public_dataset/food-101/squeezenetv1.1_128_tfs/squeezenetv1.1_128_tfs_int8.tflite", "description": "SqueezeNetv1.1 128 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/squeezenetv1.1/README.md", "visible": true }, { "name": "./image_classification/squeezenetv1.1/ST_pretrainedmodel_public_dataset/food-101/squeezenetv1.1_224_tfs/squeezenetv1.1_224_tfs_int8.tflite", "description": "SqueezeNetv1.1 224 trained from scratch on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/squeezenetv1.1/README.md", "visible": true }, { "name": "./image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite", "description": "ResNet50v2 224 fine-tuned on food-101 dataset with 101 classes, 1000 images per class", "usecase": "image_classification", "dataset_used": "food-101", "readme": "./image_classification/resnet50v2/README.md", "visible": true }, { "name": "./image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite", "description": "ResNet50v2 224 pre-trained on imagenet dataset with 1000 classes", "usecase": "image_classification", "dataset_used": "imagenet", "readme": "./image_classification/resnet50v2/README.md", "visible": false }, { "name": "./object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite", "description": "ST version of SSD Mobilenetv1 0.25 192 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_ssd_mobilenet_v1/README.md", "visible": true }, { "name": "./object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite", "description": "ST version of SSD Mobilenetv1 0.25 224 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_ssd_mobilenet_v1/README.md", "visible": true }, { "name": "./object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite", "description": "ST version of SSD Mobilenetv1 0.25 256 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_ssd_mobilenet_v1/README.md", "visible": true }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite", "description": "SSD Mobilenetv2 0.35 192 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": true }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite", "description": "SSD Mobilenetv2 0.35 224 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": true }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite", "description": "SSD Mobilenetv2 0.35 256 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": true }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite", "description": "SSD Mobilenetv2 0.35 416 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": true }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite", "description": "SSD Mobilenetv2 1.0 256 trained on COCO 2017 with 80 classes", "usecase": "object_detection", "dataset_used": "COCO 2017", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": false }, { "name": "./object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite", "description": "SSD Mobilenetv2 1.0 416 trained on COCO 2017 with 80 classes", "usecase": "object_detection", "dataset_used": "COCO 2017", "readme": "./object_detection/ssd_mobilenet_v2_fpnlite/README.md", "visible": false }, { "name": "./object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite", "description": "tiny yolo v2 224 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/tiny_yolo_v2/README.md", "visible": false }, { "name": "./object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite", "description": "tiny yolo v2 416 trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/tiny_yolo_v2/README.md", "visible": true }, { "name": "./object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite", "description": "tiny yolo v2 224 trained on internal ST Person (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "ST Person", "readme": "./object_detection/tiny_yolo_v2/README.md", "visible": true }, { "name": "./object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite", "description": "ST yolo low complexity v1 192 (derived from tiny yolo v2) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_lc_v1/README.md", "visible": true }, { "name": "./object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite", "description": "ST yolo low complexity v1 224 (derived from tiny yolo v2) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_lc_v1/README.md", "visible": true }, { "name": "./object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite", "description": "ST yolo low complexity v1 256 (derived from tiny yolo v2) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_lc_v1/README.md", "visible": true }, { "name": "./object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_192/st_yolo_x_nano_192_0.33_0.25_int8.tflite", "description": "ST yolo X (derived from YoloX) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_x/README.md", "visible": true }, { "name": "./object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_256/st_yolo_x_nano_256_0.33_0.25_int8.tflite", "description": "ST yolo X (derived from YoloX) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_x/README.md", "visible": true }, { "name": "./object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_320/st_yolo_x_nano_320_0.33_0.25_int8.tflite", "description": "ST yolo X (derived from YoloX) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_x/README.md", "visible": true }, { "name": "./object_detection/st_yolo_x/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_x_nano_416/st_yolo_x_nano_416_0.33_0.25_int8.tflite", "description": "ST yolo X (derived from YoloX) trained on COCO 2017 (Person Detection) with 1 class", "usecase": "object_detection", "dataset_used": "COCO 2017 Person", "readme": "./object_detection/st_yolo_x/README.md", "visible": true }, { "name": "./pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pc.tflite", "description": "Movenet variant trained on COCO 2017 (Person) with 1 class", "usecase": "pose_estimation", "dataset_used": "Custom COCO 2017 Person", "readme": "./pose_estimation/movenet/README.md", "visible": true }, { "name": "./pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pc.tflite", "description": "Movenet variant trained on COCO 2017 (Person) with 1 class", "usecase": "pose_estimation", "dataset_used": "Custom COCO 2017 Person", "readme": "./pose_estimation/movenet/README.md", "visible": true }, { "name": "./pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite", "description": "Movenet variant trained on COCO 2017 (Person) with 1 class", "usecase": "pose_estimation", "dataset_used": "Custom COCO 2017 Person", "readme": "./pose_estimation/movenet/README.md", "visible": true }, { "name": "./pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pc.tflite", "description": "Movenet variant trained on COCO 2017 (Person) with 1 class", "usecase": "pose_estimation", "dataset_used": "COCO 2017 Person", "readme": "./pose_estimation/movenet/README.md", "visible": true }, { "name": "./semantic_segmentation/deeplab_v3/ST_pretrainedmodel_public_dataset/person_coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_256/deeplab_v3_mobilenetv2_05_16_256_asppv2_qdq_int8.onnx", "description": "Deeplabv3 variant trained on fused coco 2017 and pascal voc 2012 dataset with person", "usecase": "semantic_segmentation", "dataset_used": "person_coco_2017_pascal_voc_2012", "readme": "./semantic_segmentation/deeplab_v3/README.md", "visible": true }, { "name": "./semantic_segmentation/deeplab_v3/ST_pretrainedmodel_public_dataset/person_coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_320/deeplab_v3_mobilenetv2_05_16_320_asppv2_qdq_int8.onnx", "description": "Deeplabv3 variant trained on fused coco 2017 and pascal voc 2012 dataset with person", "usecase": "semantic_segmentation", "dataset_used": "person_coco_2017_pascal_voc_2012", "readme": "./semantic_segmentation/deeplab_v3/README.md", "visible": true }, { "name": "./semantic_segmentation/deeplab_v3/ST_pretrainedmodel_public_dataset/person_coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_416/deeplab_v3_mobilenetv2_05_16_416_asppv2_qdq_int8.onnx", "description": "Deeplabv3 variant trained on fused coco 2017 and pascal voc 2012 dataset with person", "usecase": "semantic_segmentation", "dataset_used": "person_coco_2017_pascal_voc_2012", "readme": "./semantic_segmentation/deeplab_v3/README.md", "visible": true }, { "name": "./semantic_segmentation/deeplab_v3/ST_pretrainedmodel_public_dataset/coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_512/deeplab_v3_mobilenetv2_05_16_512_asppv1_qdq_int8.onnx", "description": "Deeplabv3 variant trained on fused coco 2017 and pascal voc 2012 dataset on 20 classes", "usecase": "semantic_segmentation", "dataset_used": "coco_2017_pascal_voc_2012", "readme": "./semantic_segmentation/deeplab_v3/README.md", "visible": true }, { "name": "./audio_event_detection/miniresnet/ST_pretrainedmodel_public_dataset/esc10/miniresnet_1stacks_64x50_tl/miniresnet_1stacks_64x50_tl_int8.tflite", "description": "MiniResNet 1 stacks 64x50 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/miniresnet/README.md", "visible": true }, { "name": "./audio_event_detection/miniresnet/ST_pretrainedmodel_public_dataset/esc10/miniresnet_2stacks_64x50_tl/miniresnet_2stacks_64x50_tl_int8.tflite", "description": "MiniResNet 2 stacks 64x50 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/miniresnet/README.md", "visible": true }, { "name": "./audio_event_detection/miniresnetv2/ST_pretrainedmodel_public_dataset/esc10/miniresnetv2_1stacks_64x50_tl/miniresnetv2_1stacks_64x50_tl_int8.tflite", "description": "MiniResNetv2 1 stacks 64x50 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/miniresnetv2/README.md", "visible": true }, { "name": "./audio_event_detection/miniresnetv2/ST_pretrainedmodel_public_dataset/esc10/miniresnetv2_2stacks_64x50_tl/miniresnetv2_2stacks_64x50_tl_int8.tflite", "description": "MiniResNetv2 2 stacks 64x50 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/miniresnetv2/README.md", "visible": true }, { "name": "./audio_event_detection/yamnet/ST_pretrainedmodel_public_dataset/esc10/yamnet_256_64x96_tl/yamnet_256_64x96_tl_int8.tflite", "description": "Yamnet 256 64x96 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/yamnet/README.md", "visible": true }, { "name": "./audio_event_detection/yamnet/ST_pretrainedmodel_public_dataset/esc10/yamnet_1024_64x96_tl/yamnet_1024_64x96_tl_int8.tflite", "description": "Yamnet 1024 64x96 trained on ESC-10 with 10 classes", "usecase": "audio_event_detection", "dataset_used": "esc10", "readme": "./audio_event_detection/yamnet/README.md", "visible": true }, { "name": "./audio_event_detection/yamnet/ST_pretrainedmodel_public_dataset/fsd50k/yamnet_256_64x96_tl/without_unknown_class/yamnet_256_64x96_tl_int8.tflite", "description": "Yamnet 256 64x96 trained on FSD50K with 5 classes", "usecase": "audio_event_detection", "dataset_used": "fsd50k", "readme": "./audio_event_detection/yamnet/README.md", "visible": true }, { "name": "./audio_event_detection/yamnet/ST_pretrainedmodel_public_dataset/fsd50k/yamnet_256_64x96_tl/with_unknown_class/yamnet_256_64x96_tl_int8.tflite", "description": "Yamnet 256 64x96 trained on FSD50K with 5 classes, with an additional 'unknown' class", "usecase": "audio_event_detection", "dataset_used": "fsd50k", "readme": "./audio_event_detection/yamnet/README.md", "visible": true }, { "name": "./human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_24/gmp_wl_24.h5", "description": "GMP 24x3 trained on WISDM with 4 classes", "usecase": "human_activity_recognition", "dataset_used": "WISDM", "readme": "./human_activity_recognition/gmp/README.md", "visible": true }, { "name": "./human_activity_recognition/gmp/ST_pretrainedmodel_public_dataset/WISDM/gmp_wl_48/gmp_wl_48.h5", "description": "GMP 48x3 trained on WISDM with 4 classes", "usecase": "human_activity_recognition", "dataset_used": "WISDM", "readme": "./human_activity_recognition/gmp/README.md", "visible": true }, { "name": "./human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_24/ign_wl_24.h5", "description": "IGN 24x3 trained on WISDM with 4 classes", "usecase": "human_activity_recognition", "dataset_used": "WISDM", "readme": "./human_activity_recognition/ign/README.md", "visible": true }, { "name": "./human_activity_recognition/ign/ST_pretrainedmodel_public_dataset/WISDM/ign_wl_48/ign_wl_48.h5", "description": "IGN 48x3 trained on WISDM with 4 classes", "usecase": "human_activity_recognition", "dataset_used": "WISDM", "readme": "./human_activity_recognition/ign/README.md", "visible": true }, { "name": "./hand_posture/CNN2D_ST_HandPosture/ST_pretrainedmodel_custom_dataset/ST_VL53L5CX_handposture_dataset/CNN2D_ST_HandPosture_8classes/CNN2D_ST_HandPosture_8classes.h5", "description": "CNN2D_ST_HandPosture 8 postures trained on ST_VL53L5CX_handposture_dataset with 8 classes", "usecase": "hand_posture", "dataset_used": "ST_VL53L5CX_handposture_dataset", "readme": "./hand_posture/CNN2D_ST_HandPosture/README.md", "visible": true }, { "name": "./hand_posture/CNN2D_ST_HandPosture/ST_pretrainedmodel_custom_dataset/ST_VL53L8CX_handposture_dataset/CNN2D_ST_HandPosture_8classes/CNN2D_ST_HandPosture_8classes.h5", "description": "CNN2D_ST_HandPosture 8 postures trained on ST_VL53L8CX_handposture_dataset with 8 classes", "usecase": "hand_posture", "dataset_used": "ST_VL53L8CX_handposture_dataset", "readme": "./hand_posture/CNN2D_ST_HandPosture/README.md", "visible": true }, { "name": "./speech_enhancement/stft_tcnn/ST_pretrainedmodel_public_dataset/valentini/stft_tcnn_medium_sigmoid_257x40_qdq_int8.onnx", "description": "Speech enhancement to remove audio noise - trained on Valentini dataset", "usecase": "speech_enhancement", "dataset_used": "Valentini", "readme": "./speech_enhancement/stft_tcnn/README.md", "visible": true } ]