-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
sort.jl
1570 lines (1312 loc) · 48.6 KB
/
sort.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
module Sort
import ..@__MODULE__, ..parentmodule
const Base = parentmodule(@__MODULE__)
using .Base.Order
using .Base: copymutable, LinearIndices, length, (:), iterate, OneTo,
eachindex, axes, first, last, similar, zip, OrdinalRange, firstindex, lastindex,
AbstractVector, @inbounds, AbstractRange, @eval, @inline, Vector, @noinline,
AbstractMatrix, AbstractUnitRange, isless, identity, eltype, >, <, <=, >=, |, +, -, *, !,
extrema, sub_with_overflow, add_with_overflow, oneunit, div, getindex, setindex!,
length, resize!, fill, Missing, require_one_based_indexing, keytype, UnitRange,
min, max, reinterpret, signed, unsigned, Signed, Unsigned, typemin, xor, Type, BitSigned
using .Base: >>>, !==
import .Base:
sort,
sort!,
issorted,
sortperm,
to_indices
export # also exported by Base
# order-only:
issorted,
searchsorted,
searchsortedfirst,
searchsortedlast,
insorted,
# order & algorithm:
sort,
sort!,
sortperm,
sortperm!,
partialsort,
partialsort!,
partialsortperm,
partialsortperm!,
# algorithms:
InsertionSort,
QuickSort,
MergeSort,
PartialQuickSort
export # not exported by Base
Algorithm,
DEFAULT_UNSTABLE,
DEFAULT_STABLE,
SMALL_ALGORITHM,
SMALL_THRESHOLD
## functions requiring only ordering ##
function issorted(itr, order::Ordering)
y = iterate(itr)
y === nothing && return true
prev, state = y
y = iterate(itr, state)
while y !== nothing
this, state = y
lt(order, this, prev) && return false
prev = this
y = iterate(itr, state)
end
return true
end
"""
issorted(v, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)
Test whether a vector is in sorted order. The `lt`, `by` and `rev` keywords modify what
order is considered to be sorted just as they do for [`sort`](@ref).
# Examples
```jldoctest
julia> issorted([1, 2, 3])
true
julia> issorted([(1, "b"), (2, "a")], by = x -> x[1])
true
julia> issorted([(1, "b"), (2, "a")], by = x -> x[2])
false
julia> issorted([(1, "b"), (2, "a")], by = x -> x[2], rev=true)
true
```
"""
issorted(itr;
lt=isless, by=identity, rev::Union{Bool,Nothing}=nothing, order::Ordering=Forward) =
issorted(itr, ord(lt,by,rev,order))
function partialsort!(v::AbstractVector, k::Union{Integer,OrdinalRange}, o::Ordering)
sort!(v, firstindex(v), lastindex(v), PartialQuickSort(k), o)
maybeview(v, k)
end
maybeview(v, k) = view(v, k)
maybeview(v, k::Integer) = v[k]
"""
partialsort!(v, k; by=<transform>, lt=<comparison>, rev=false)
Partially sort the vector `v` in place, according to the order specified by `by`, `lt` and
`rev` so that the value at index `k` (or range of adjacent values if `k` is a range) occurs
at the position where it would appear if the array were fully sorted via a non-stable
algorithm. If `k` is a single index, that value is returned; if `k` is a range, an array of
values at those indices is returned. Note that `partialsort!` does not fully sort the input
array.
# Examples
```jldoctest
julia> a = [1, 2, 4, 3, 4]
5-element Vector{Int64}:
1
2
4
3
4
julia> partialsort!(a, 4)
4
julia> a
5-element Vector{Int64}:
1
2
3
4
4
julia> a = [1, 2, 4, 3, 4]
5-element Vector{Int64}:
1
2
4
3
4
julia> partialsort!(a, 4, rev=true)
2
julia> a
5-element Vector{Int64}:
4
4
3
2
1
```
"""
partialsort!(v::AbstractVector, k::Union{Integer,OrdinalRange};
lt=isless, by=identity, rev::Union{Bool,Nothing}=nothing, order::Ordering=Forward) =
partialsort!(v, k, ord(lt,by,rev,order))
"""
partialsort(v, k, by=<transform>, lt=<comparison>, rev=false)
Variant of [`partialsort!`](@ref) which copies `v` before partially sorting it, thereby returning the
same thing as `partialsort!` but leaving `v` unmodified.
"""
partialsort(v::AbstractVector, k::Union{Integer,OrdinalRange}; kws...) =
partialsort!(copymutable(v), k; kws...)
# This implementation of `midpoint` is performance-optimized but safe
# only if `lo <= hi`.
midpoint(lo::T, hi::T) where T<:Integer = lo + ((hi - lo) >>> 0x01)
midpoint(lo::Integer, hi::Integer) = midpoint(promote(lo, hi)...)
# reference on sorted binary search:
# http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary
# index of the first value of vector a that is greater than or equal to x;
# returns lastindex(v)+1 if x is greater than all values in v.
function searchsortedfirst(v::AbstractVector, x, lo::T, hi::T, o::Ordering)::keytype(v) where T<:Integer
u = T(1)
lo = lo - u
hi = hi + u
@inbounds while lo < hi - u
m = midpoint(lo, hi)
if lt(o, v[m], x)
lo = m
else
hi = m
end
end
return hi
end
# index of the last value of vector a that is less than or equal to x;
# returns firstindex(v)-1 if x is less than all values of v.
function searchsortedlast(v::AbstractVector, x, lo::T, hi::T, o::Ordering)::keytype(v) where T<:Integer
u = T(1)
lo = lo - u
hi = hi + u
@inbounds while lo < hi - u
m = midpoint(lo, hi)
if lt(o, x, v[m])
hi = m
else
lo = m
end
end
return lo
end
# returns the range of indices of v equal to x
# if v does not contain x, returns a 0-length range
# indicating the insertion point of x
function searchsorted(v::AbstractVector, x, ilo::T, ihi::T, o::Ordering)::UnitRange{keytype(v)} where T<:Integer
u = T(1)
lo = ilo - u
hi = ihi + u
@inbounds while lo < hi - u
m = midpoint(lo, hi)
if lt(o, v[m], x)
lo = m
elseif lt(o, x, v[m])
hi = m
else
a = searchsortedfirst(v, x, max(lo,ilo), m, o)
b = searchsortedlast(v, x, m, min(hi,ihi), o)
return a : b
end
end
return (lo + 1) : (hi - 1)
end
function searchsortedlast(a::AbstractRange{<:Real}, x::Real, o::DirectOrdering)::keytype(a)
require_one_based_indexing(a)
f, h, l = first(a), step(a), last(a)
if lt(o, x, f)
0
elseif h == 0 || !lt(o, x, l)
length(a)
else
n = round(Integer, (x - f) / h + 1)
lt(o, x, a[n]) ? n - 1 : n
end
end
function searchsortedfirst(a::AbstractRange{<:Real}, x::Real, o::DirectOrdering)::keytype(a)
require_one_based_indexing(a)
f, h, l = first(a), step(a), last(a)
if !lt(o, f, x)
1
elseif h == 0 || lt(o, l, x)
length(a) + 1
else
n = round(Integer, (x - f) / h + 1)
lt(o, a[n], x) ? n + 1 : n
end
end
function searchsortedlast(a::AbstractRange{<:Integer}, x::Real, o::DirectOrdering)::keytype(a)
require_one_based_indexing(a)
f, h, l = first(a), step(a), last(a)
if lt(o, x, f)
0
elseif h == 0 || !lt(o, x, l)
length(a)
else
if o isa ForwardOrdering
fld(floor(Integer, x) - f, h) + 1
else
fld(ceil(Integer, x) - f, h) + 1
end
end
end
function searchsortedfirst(a::AbstractRange{<:Integer}, x::Real, o::DirectOrdering)::keytype(a)
require_one_based_indexing(a)
f, h, l = first(a), step(a), last(a)
if !lt(o, f, x)
1
elseif h == 0 || lt(o, l, x)
length(a) + 1
else
if o isa ForwardOrdering
cld(ceil(Integer, x) - f, h) + 1
else
cld(floor(Integer, x) - f, h) + 1
end
end
end
searchsorted(a::AbstractRange{<:Real}, x::Real, o::DirectOrdering) =
searchsortedfirst(a, x, o) : searchsortedlast(a, x, o)
for s in [:searchsortedfirst, :searchsortedlast, :searchsorted]
@eval begin
$s(v::AbstractVector, x, o::Ordering) = $s(v,x,firstindex(v),lastindex(v),o)
$s(v::AbstractVector, x;
lt=isless, by=identity, rev::Union{Bool,Nothing}=nothing, order::Ordering=Forward) =
$s(v,x,ord(lt,by,rev,order))
end
end
"""
searchsorted(a, x; by=<transform>, lt=<comparison>, rev=false)
Return the range of indices of `a` which compare as equal to `x` (using binary search)
according to the order specified by the `by`, `lt` and `rev` keywords, assuming that `a`
is already sorted in that order. Return an empty range located at the insertion point
if `a` does not contain values equal to `x`.
See also: [`insorted`](@ref), [`searchsortedfirst`](@ref), [`sort`](@ref), [`findall`](@ref).
# Examples
```jldoctest
julia> searchsorted([1, 2, 4, 5, 5, 7], 4) # single match
3:3
julia> searchsorted([1, 2, 4, 5, 5, 7], 5) # multiple matches
4:5
julia> searchsorted([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
3:2
julia> searchsorted([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
7:6
julia> searchsorted([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
1:0
```
""" searchsorted
"""
searchsortedfirst(a, x; by=<transform>, lt=<comparison>, rev=false)
Return the index of the first value in `a` greater than or equal to `x`, according to the
specified order. Return `lastindex(a) + 1` if `x` is greater than all values in `a`.
`a` is assumed to be sorted.
See also: [`searchsortedlast`](@ref), [`searchsorted`](@ref), [`findfirst`](@ref).
# Examples
```jldoctest
julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 4) # single match
3
julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 5) # multiple matches
4
julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
3
julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
7
julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
1
```
""" searchsortedfirst
"""
searchsortedlast(a, x; by=<transform>, lt=<comparison>, rev=false)
Return the index of the last value in `a` less than or equal to `x`, according to the
specified order. Return `firstindex(a) - 1` if `x` is less than all values in `a`. `a` is
assumed to be sorted.
# Examples
```jldoctest
julia> searchsortedlast([1, 2, 4, 5, 5, 7], 4) # single match
3
julia> searchsortedlast([1, 2, 4, 5, 5, 7], 5) # multiple matches
5
julia> searchsortedlast([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
2
julia> searchsortedlast([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
6
julia> searchsortedlast([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
0
```
""" searchsortedlast
"""
insorted(x, a; by=<transform>, lt=<comparison>, rev=false) -> Bool
Determine whether an item `x` is in the sorted collection `a`, in the sense that
it is [`==`](@ref) to one of the values of the collection according to the order
specified by the `by`, `lt` and `rev` keywords, assuming that `a` is already
sorted in that order, see [`sort`](@ref) for the keywords.
See also [`in`](@ref).
# Examples
```jldoctest
julia> insorted(4, [1, 2, 4, 5, 5, 7]) # single match
true
julia> insorted(5, [1, 2, 4, 5, 5, 7]) # multiple matches
true
julia> insorted(3, [1, 2, 4, 5, 5, 7]) # no match
false
julia> insorted(9, [1, 2, 4, 5, 5, 7]) # no match
false
julia> insorted(0, [1, 2, 4, 5, 5, 7]) # no match
false
```
!!! compat "Julia 1.6"
`insorted` was added in Julia 1.6.
"""
function insorted end
insorted(x, v::AbstractVector; kw...) = !isempty(searchsorted(v, x; kw...))
insorted(x, r::AbstractRange) = in(x, r)
## sorting algorithms ##
abstract type Algorithm end
struct InsertionSortAlg <: Algorithm end
struct QuickSortAlg <: Algorithm end
struct MergeSortAlg <: Algorithm end
"""
AdaptiveSort(fallback)
Indicate that a sorting function should use the fastest available algorithm.
Adaptive sort will use the algorithm specified by `fallback` for types and orders that are
not [`UIntMappable`](@ref). Otherwise, it will typically use:
* Insertion sort for short vectors
* Radix sort for long vectors
* Counting sort for vectors of integers spanning a short range
Adaptive sort is guaranteed to be stable if the fallback algorithm is stable.
"""
struct AdaptiveSort{Fallback <: Algorithm} <: Algorithm
fallback::Fallback
end
"""
PartialQuickSort{T <: Union{Integer,OrdinalRange}}
Indicate that a sorting function should use the partial quick sort
algorithm. Partial quick sort returns the smallest `k` elements sorted from smallest
to largest, finding them and sorting them using [`QuickSort`](@ref).
Characteristics:
* *not stable*: does not preserve the ordering of elements which
compare equal (e.g. "a" and "A" in a sort of letters which
ignores case).
* *in-place* in memory.
* *divide-and-conquer*: sort strategy similar to [`MergeSort`](@ref).
"""
struct PartialQuickSort{T <: Union{Integer,OrdinalRange}} <: Algorithm
k::T
end
"""
InsertionSort
Indicate that a sorting function should use the insertion sort
algorithm. Insertion sort traverses the collection one element
at a time, inserting each element into its correct, sorted position in
the output vector.
Characteristics:
* *stable*: preserves the ordering of elements which
compare equal (e.g. "a" and "A" in a sort of letters
which ignores case).
* *in-place* in memory.
* *quadratic performance* in the number of elements to be sorted:
it is well-suited to small collections but should not be used for large ones.
"""
const InsertionSort = InsertionSortAlg()
"""
QuickSort
Indicate that a sorting function should use the quick sort
algorithm, which is *not* stable.
Characteristics:
* *not stable*: does not preserve the ordering of elements which
compare equal (e.g. "a" and "A" in a sort of letters which
ignores case).
* *in-place* in memory.
* *divide-and-conquer*: sort strategy similar to [`MergeSort`](@ref).
* *good performance* for large collections.
"""
const QuickSort = QuickSortAlg()
"""
MergeSort
Indicate that a sorting function should use the merge sort
algorithm. Merge sort divides the collection into
subcollections and repeatedly merges them, sorting each
subcollection at each step, until the entire
collection has been recombined in sorted form.
Characteristics:
* *stable*: preserves the ordering of elements which compare
equal (e.g. "a" and "A" in a sort of letters which ignores
case).
* *not in-place* in memory.
* *divide-and-conquer* sort strategy.
"""
const MergeSort = MergeSortAlg()
const DEFAULT_UNSTABLE = AdaptiveSort(QuickSort)
const DEFAULT_STABLE = AdaptiveSort(MergeSort)
const SMALL_ALGORITHM = InsertionSort
const SMALL_THRESHOLD = 20
function sort!(v::AbstractVector, lo::Integer, hi::Integer, ::InsertionSortAlg, o::Ordering)
@inbounds for i = lo+1:hi
j = i
x = v[i]
while j > lo && lt(o, x, v[j-1])
v[j] = v[j-1]
j -= 1
end
v[j] = x
end
return v
end
# selectpivot!
#
# Given 3 locations in an array (lo, mi, and hi), sort v[lo], v[mi], v[hi]) and
# choose the middle value as a pivot
#
# Upon return, the pivot is in v[lo], and v[hi] is guaranteed to be
# greater than the pivot
@inline function selectpivot!(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
@inbounds begin
mi = midpoint(lo, hi)
# sort v[mi] <= v[lo] <= v[hi] such that the pivot is immediately in place
if lt(o, v[lo], v[mi])
v[mi], v[lo] = v[lo], v[mi]
end
if lt(o, v[hi], v[lo])
if lt(o, v[hi], v[mi])
v[hi], v[lo], v[mi] = v[lo], v[mi], v[hi]
else
v[hi], v[lo] = v[lo], v[hi]
end
end
# return the pivot
return v[lo]
end
end
# partition!
#
# select a pivot, and partition v according to the pivot
function partition!(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
pivot = selectpivot!(v, lo, hi, o)
# pivot == v[lo], v[hi] > pivot
i, j = lo, hi
@inbounds while true
i += 1; j -= 1
while lt(o, v[i], pivot); i += 1; end;
while lt(o, pivot, v[j]); j -= 1; end;
i >= j && break
v[i], v[j] = v[j], v[i]
end
v[j], v[lo] = pivot, v[j]
# v[j] == pivot
# v[k] >= pivot for k > j
# v[i] <= pivot for i < j
return j
end
function sort!(v::AbstractVector, lo::Integer, hi::Integer, a::QuickSortAlg, o::Ordering)
@inbounds while lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
j = partition!(v, lo, hi, o)
if j-lo < hi-j
# recurse on the smaller chunk
# this is necessary to preserve O(log(n))
# stack space in the worst case (rather than O(n))
lo < (j-1) && sort!(v, lo, j-1, a, o)
lo = j+1
else
j+1 < hi && sort!(v, j+1, hi, a, o)
hi = j-1
end
end
return v
end
function sort!(v::AbstractVector{T}, lo::Integer, hi::Integer, a::MergeSortAlg, o::Ordering,
t0::Union{AbstractVector{T}, Nothing}=nothing) where T
@inbounds if lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
m = midpoint(lo, hi)
t = t0 === nothing ? similar(v, m-lo+1) : t0
length(t) < m-lo+1 && resize!(t, m-lo+1)
Base.require_one_based_indexing(t)
sort!(v, lo, m, a, o, t)
sort!(v, m+1, hi, a, o, t)
i, j = 1, lo
while j <= m
t[i] = v[j]
i += 1
j += 1
end
i, k = 1, lo
while k < j <= hi
if lt(o, v[j], t[i])
v[k] = v[j]
j += 1
else
v[k] = t[i]
i += 1
end
k += 1
end
while k < j
v[k] = t[i]
k += 1
i += 1
end
end
return v
end
function sort!(v::AbstractVector, lo::Integer, hi::Integer, a::PartialQuickSort,
o::Ordering)
@inbounds while lo < hi
hi-lo <= SMALL_THRESHOLD && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
j = partition!(v, lo, hi, o)
if j <= first(a.k)
lo = j+1
elseif j >= last(a.k)
hi = j-1
else
# recurse on the smaller chunk
# this is necessary to preserve O(log(n))
# stack space in the worst case (rather than O(n))
if j-lo < hi-j
lo < (j-1) && sort!(v, lo, j-1, a, o)
lo = j+1
else
hi > (j+1) && sort!(v, j+1, hi, a, o)
hi = j-1
end
end
end
return v
end
# This is a stable least significant bit first radix sort.
#
# That is, it first sorts the entire vector by the last chunk_size bits, then by the second
# to last chunk_size bits, and so on. Stability means that it will not reorder two elements
# that compare equal. This is essential so that the order introduced by earlier,
# less significant passes is preserved by later passes.
#
# Each pass divides the input into 2^chunk_size == mask+1 buckets. To do this, it
# * counts the number of entries that fall into each bucket
# * uses those counts to compute the indices to move elements of those buckets into
# * moves elements into the computed indices in the swap array
# * switches the swap and working array
#
# In the case of an odd number of passes, the returned vector will === the input vector t,
# not v. This is one of the many reasons radix_sort! is not exported.
function radix_sort!(v::AbstractVector{U}, lo::Integer, hi::Integer, bits::Unsigned,
t::AbstractVector{U}, chunk_size=radix_chunk_size_heuristic(lo, hi, bits)) where U <: Unsigned
# bits is unsigned for performance reasons.
mask = UInt(1) << chunk_size - 1
counts = Vector{Int}(undef, mask+2)
@inbounds for shift in 0:chunk_size:bits-1
# counts[2:mask+2] will store the number of elements that fall into each bucket.
# if chunk_size = 8, counts[2] is bucket 0x00 and counts[257] is bucket 0xff.
counts .= 0
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 2 # compute its bucket's index for this pass
counts[i] += 1 # increment that bucket's count
end
counts[1] = lo # set target index for the first bucket
cumsum!(counts, counts) # set target indices for subsequent buckets
# counts[1:mask+1] now stores indices where the first member of each bucket
# belongs, not the number of elements in each bucket. We will put the first element
# of bucket 0x00 in t[counts[1]], the next element of bucket 0x00 in t[counts[1]+1],
# and the last element of bucket 0x00 in t[counts[2]-1].
for k in lo:hi
x = v[k] # lookup the element
i = (x >> shift)&mask + 1 # compute its bucket's index for this pass
j = counts[i] # lookup the target index
t[j] = x # put the element where it belongs
counts[i] = j + 1 # increment the target index for the next
end # ↳ element in this bucket
v, t = t, v # swap the now sorted destination vector t back into primary vector v
end
v
end
function radix_chunk_size_heuristic(lo::Integer, hi::Integer, bits::Unsigned)
# chunk_size is the number of bits to radix over at once.
# We need to allocate an array of size 2^chunk size, and on the other hand the higher
# the chunk size the fewer passes we need. Theoretically, chunk size should be based on
# the Lambert W function applied to length. Empirically, we use this heuristic:
guess = min(10, log(maybe_unsigned(hi-lo))*3/4+3)
# TODO the maximum chunk size should be based on architecture cache size.
# We need iterations * chunk size ≥ bits, and these cld's
# make an effort to get iterations * chunk size ≈ bits
UInt8(cld(bits, cld(bits, guess)))
end
# For AbstractVector{Bool}, counting sort is always best.
# This is an implementation of counting sort specialized for Bools.
# Accepts unused workspace to avoid method ambiguity.
function sort!(v::AbstractVector{B}, lo::Integer, hi::Integer, a::AdaptiveSort, o::Ordering,
t::Union{AbstractVector{B}, Nothing}=nothing) where {B <: Bool}
first = lt(o, false, true) ? false : lt(o, true, false) ? true : return v
count = 0
@inbounds for i in lo:hi
if v[i] == first
count += 1
end
end
@inbounds v[lo:lo+count-1] .= first
@inbounds v[lo+count:hi] .= !first
v
end
maybe_unsigned(x::Integer) = x # this is necessary to avoid calling unsigned on BigInt
maybe_unsigned(x::BitSigned) = unsigned(x)
function _extrema(v::AbstractVector, lo::Integer, hi::Integer, o::Ordering)
mn = mx = v[lo]
@inbounds for i in (lo+1):hi
vi = v[i]
lt(o, vi, mn) && (mn = vi)
lt(o, mx, vi) && (mx = vi)
end
mn, mx
end
function sort!(v::AbstractVector{T}, lo::Integer, hi::Integer, a::AdaptiveSort, o::Ordering,
t::Union{AbstractVector{T}, Nothing}=nothing) where T
# if the sorting task is not UIntMappable, then we can't radix sort or sort_int_range!
# so we skip straight to the fallback algorithm which is comparison based.
U = UIntMappable(T, o)
U === nothing && return sort!(v, lo, hi, a.fallback, o)
# to avoid introducing excessive detection costs for the trivial sorting problem
# and to avoid overflow, we check for small inputs before any other runtime checks
hi <= lo && return v
lenm1 = maybe_unsigned(hi-lo) # adding 1 would risk overflow
# only count sort on a short range can compete with insertion sort when lenm1 < 40
# and the optimization is not worth the detection cost, so we use insertion sort.
lenm1 < 40 && return sort!(v, lo, hi, SMALL_ALGORITHM, o)
# For most arrays, a presorted check is cheap (overhead < 5%) and for most large
# arrays it is essentially free (<1%). Insertion sort runs in a fast O(n) on presorted
# input and this guarantees presorted input will always be efficiently handled
issorted(view(v, lo:hi), o) && return v
# For large arrays, a reverse-sorted check is essentially free (overhead < 1%)
if lenm1 >= 500 && issorted(view(v, lo:hi), ReverseOrdering(o))
reverse!(view(v, lo:hi))
return v
end
# UInt128 does not support fast bit shifting so we never
# dispatch to radix sort but we may still perform count sort
if sizeof(U) > 8
if T <: Integer && o isa DirectOrdering
v_min, v_max = _extrema(v, lo, hi, Forward)
v_range = maybe_unsigned(v_max-v_min)
v_range == 0 && return v # all same
# we know lenm1 ≥ 40, so this will never underflow.
# if lenm1 > 3.7e18 (59 exabytes), then this may incorrectly dispatch to fallback
if v_range < 5lenm1-100 # count sort will outperform comparison sort if v's range is small
return sort_int_range!(v, Int(v_range+1), v_min, o === Forward ? identity : reverse, lo, hi)
end
end
return sort!(v, lo, hi, a.fallback, o)
end
v_min, v_max = _extrema(v, lo, hi, o)
lt(o, v_min, v_max) || return v # all same
if T <: Integer && o isa DirectOrdering
R = o === Reverse
v_range = maybe_unsigned(R ? v_min-v_max : v_max-v_min)
if v_range < div(lenm1, 2) # count sort will be superior if v's range is very small
return sort_int_range!(v, Int(v_range+1), R ? v_max : v_min, R ? reverse : identity, lo, hi)
end
end
u_min, u_max = uint_map(v_min, o), uint_map(v_max, o)
u_range = maybe_unsigned(u_max-u_min)
if u_range < div(lenm1, 2) # count sort will be superior if u's range is very small
u = uint_map!(v, lo, hi, o)
sort_int_range!(u, Int(u_range+1), u_min, identity, lo, hi)
return uint_unmap!(v, u, lo, hi, o)
end
# if u's range is small, then once we subtract out v_min, we'll get a vector like
# UInt16[0x001a, 0x0015, 0x0006, 0x001b, 0x0008, 0x000c, 0x0001, 0x000e, 0x001c, 0x0009]
# where we only need to radix over the last few bits (5, in the example).
bits = unsigned(8sizeof(u_range) - leading_zeros(u_range))
# radix sort runs in O(bits * lenm1), insertion sort runs in O(lenm1^2). Radix sort
# has a constant factor that is three times higher, so radix runtime is 3bits * lenm1
# and insertion runtime is lenm1^2. Empirically, insertion is faster than radix iff
# lenm1 < 3bits.
# Insertion < Radix
# lenm1^2 < 3 * bits * lenm1
# lenm1 < 3bits
if lenm1 < 3bits
# at lenm1 = 64*3-1, QuickSort is about 20% faster than InsertionSort.
alg = a.fallback === QuickSort && lenm1 > 120 ? QuickSort : SMALL_ALGORITHM
return sort!(v, lo, hi, alg, o)
end
# At this point, we are committed to radix sort.
u = uint_map!(v, lo, hi, o)
# we subtract u_min to avoid radixing over unnecessary bits. For example,
# Int32[3, -1, 2] uint_maps to UInt32[0x80000003, 0x7fffffff, 0x80000002]
# which uses all 32 bits, but once we subtract u_min = 0x7fffffff, we are left with
# UInt32[0x00000004, 0x00000000, 0x00000003] which uses only 3 bits, and
# Float32[2.012, 400.0, 12.345] uint_maps to UInt32[0x3fff3b63, 0x3c37ffff, 0x414570a4]
# which is reduced to UInt32[0x03c73b64, 0x00000000, 0x050d70a5] using only 26 bits.
# the overhead for this subtraction is small enough that it is worthwhile in many cases.
# this is faster than u[lo:hi] .-= u_min as of v1.9.0-DEV.100
@inbounds for i in lo:hi
u[i] -= u_min
end
if t !== nothing && checkbounds(Bool, t, lo:hi) # Fully preallocated and aligned workspace
u2 = radix_sort!(u, lo, hi, bits, reinterpret(U, t))
uint_unmap!(v, u2, lo, hi, o, u_min)
elseif t !== nothing && (applicable(resize!, t) || length(t) >= hi-lo+1) # Viable workspace
length(t) >= hi-lo+1 || resize!(t, hi-lo+1)
t1 = axes(t, 1) isa OneTo ? t : view(t, firstindex(t):lastindex(t))
u2 = radix_sort!(view(u, lo:hi), 1, hi-lo+1, bits, reinterpret(U, t1))
uint_unmap!(view(v, lo:hi), u2, 1, hi-lo+1, o, u_min)
else # No viable workspace
u2 = radix_sort!(u, lo, hi, bits, similar(u))
uint_unmap!(v, u2, lo, hi, o, u_min)
end
end
## generic sorting methods ##
defalg(v::AbstractArray) = DEFAULT_STABLE
defalg(v::AbstractArray{<:Union{Number, Missing}}) = DEFAULT_UNSTABLE
defalg(v::AbstractArray{Missing}) = DEFAULT_UNSTABLE # for method disambiguation
defalg(v::AbstractArray{Union{}}) = DEFAULT_UNSTABLE # for method disambiguation
function sort!(v::AbstractVector{T}, alg::Algorithm,
order::Ordering, t::Union{AbstractVector{T}, Nothing}=nothing) where T
sort!(v, firstindex(v), lastindex(v), alg, order, t)
end
function sort!(v::AbstractVector{T}, lo::Integer, hi::Integer, alg::Algorithm,
order::Ordering, t::Union{AbstractVector{T}, Nothing}=nothing) where T
sort!(v, lo, hi, alg, order)
end
"""
sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)
Sort the vector `v` in place. [`QuickSort`](@ref) is used by default for numeric arrays while
[`MergeSort`](@ref) is used for other arrays. You can specify an algorithm to use via the `alg`
keyword (see [Sorting Algorithms](@ref) for available algorithms). The `by` keyword lets you provide
a function that will be applied to each element before comparison; the `lt` keyword allows
providing a custom "less than" function (note that for every `x` and `y`, only one of `lt(x,y)`
and `lt(y,x)` can return `true`); use `rev=true` to reverse the sorting order. These
options are independent and can be used together in all possible combinations: if both `by`
and `lt` are specified, the `lt` function is applied to the result of the `by` function;
`rev=true` reverses whatever ordering specified via the `by` and `lt` keywords.
# Examples
```jldoctest
julia> v = [3, 1, 2]; sort!(v); v
3-element Vector{Int64}:
1
2
3
julia> v = [3, 1, 2]; sort!(v, rev = true); v
3-element Vector{Int64}:
3
2
1
julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v
3-element Vector{Tuple{Int64, String}}:
(1, "c")
(2, "b")
(3, "a")
julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v
3-element Vector{Tuple{Int64, String}}:
(3, "a")
(2, "b")
(1, "c")
```
"""
function sort!(v::AbstractVector{T};
alg::Algorithm=defalg(v),
lt=isless,
by=identity,
rev::Union{Bool,Nothing}=nothing,
order::Ordering=Forward,
workspace::Union{AbstractVector{T}, Nothing}=nothing) where T
sort!(v, alg, ord(lt,by,rev,order), workspace)
end
# sort! for vectors of few unique integers
function sort_int_range!(x::AbstractVector{<:Integer}, rangelen, minval, maybereverse,
lo=firstindex(x), hi=lastindex(x))
offs = 1 - minval
counts = fill(0, rangelen)
@inbounds for i = lo:hi
counts[x[i] + offs] += 1
end
idx = lo
@inbounds for i = maybereverse(1:rangelen)
lastidx = idx + counts[i] - 1
val = i-offs
for j = idx:lastidx
x[j] = val
end
idx = lastidx + 1
end
return x
end
"""
sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)
Variant of [`sort!`](@ref) that returns a sorted copy of `v` leaving `v` itself unmodified.
# Examples
```jldoctest
julia> v = [3, 1, 2];
julia> sort(v)
3-element Vector{Int64}:
1
2
3
julia> v
3-element Vector{Int64}:
3
1
2
```
"""
sort(v::AbstractVector; kws...) = sort!(copymutable(v); kws...)
## partialsortperm: the permutation to sort the first k elements of an array ##
"""
partialsortperm(v, k; by=<transform>, lt=<comparison>, rev=false)
Return a partial permutation `I` of the vector `v`, so that `v[I]` returns values of a fully
sorted version of `v` at index `k`. If `k` is a range, a vector of indices is returned; if
`k` is an integer, a single index is returned. The order is specified using the same
keywords as `sort!`. The permutation is stable, meaning that indices of equal elements
appear in ascending order.
Note that this function is equivalent to, but more efficient than, calling `sortperm(...)[k]`.
# Examples