-
Notifications
You must be signed in to change notification settings - Fork 23
/
trainer.py
230 lines (184 loc) · 11.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import sys
sys.path.append('../src')
import torch
import numpy as np
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.utils import subgraph, to_networkx
from tqdm import tqdm
import networkx as nx
from rdkit import Chem
import matplotlib.pyplot as plt
from ogb.graphproppred import Evaluator
from sklearn.metrics import roc_auc_score
from utils import process_data, get_preds, save_checkpoint
@torch.no_grad()
def eval_one_batch(gsat, data, epoch):
gsat.extractor.eval()
gsat.clf.eval()
att, loss, loss_dict, clf_logits = gsat.forward_pass(data, epoch, training=False)
return att.data.cpu().reshape(-1), loss_dict, clf_logits.data.cpu()
def train_one_batch(gsat, data, epoch):
gsat.extractor.train()
gsat.clf.train()
att, loss, loss_dict, clf_logits = gsat.forward_pass(data, epoch, training=True)
gsat.optimizer.zero_grad()
loss.backward()
gsat.optimizer.step()
return att.data.cpu().reshape(-1), loss_dict, clf_logits.data.cpu()
def run_one_epoch(gsat, data_loader, epoch, phase, dataset_name, seed, use_edge_attr, multi_label):
loader_len = len(data_loader)
run_one_batch = train_one_batch if phase == 'train' else eval_one_batch
phase = 'test ' if phase == 'test' else phase # align tqdm desc bar
all_loss_dict = {}
all_exp_labels, all_att, all_clf_labels, all_clf_logits = ([] for i in range(4))
pbar = tqdm(data_loader)
for idx, data in enumerate(pbar):
data = process_data(data, use_edge_attr)
att, loss_dict, clf_logits = run_one_batch(gsat, data.to(gsat.device), epoch)
exp_labels = data.edge_label.data.cpu()
desc, _, _, _, _ = log_epoch(epoch, phase, loss_dict, exp_labels, att, data.y.data.cpu(), clf_logits,
dataset_name, seed, multi_label, batch=True)
for k, v in loss_dict.items():
all_loss_dict[k] = all_loss_dict.get(k, 0) + v
all_exp_labels.append(exp_labels), all_att.append(att)
all_clf_labels.append(data.y.data.cpu()), all_clf_logits.append(clf_logits)
if idx == loader_len - 1:
all_exp_labels, all_att = torch.cat(all_exp_labels), torch.cat(all_att),
all_clf_labels, all_clf_logits = torch.cat(all_clf_labels), torch.cat(all_clf_logits)
for k, v in all_loss_dict.items():
all_loss_dict[k] = v / loader_len
desc, att_auroc, clf_acc, clf_roc, avg_loss = log_epoch(epoch, phase, all_loss_dict, all_exp_labels, all_att, all_clf_labels, all_clf_logits,
dataset_name, seed, multi_label, batch=False)
pbar.set_description(desc)
return att_auroc, None, clf_acc, clf_roc, avg_loss
def log_epoch(epoch, phase, loss_dict, exp_labels, att, clf_labels, clf_logits, dataset_name, seed, multi_label, batch):
desc = f'[Seed {seed}, Epoch: {epoch}]: gsat_{phase}........., ' if batch else f'[Seed {seed}, Epoch: {epoch}]: gsat_{phase} finished, '
for k, v in loss_dict.items():
desc += f'{k}: {v:.3f}, '
eval_desc, att_auroc, clf_acc, clf_roc = get_eval_score(exp_labels, att, clf_labels, clf_logits, dataset_name, multi_label, batch)
desc += eval_desc
return desc, att_auroc, clf_acc, clf_roc, loss_dict['pred']
def get_eval_score(exp_labels, att, clf_labels, clf_logits, dataset_name, multi_label, batch):
clf_preds = get_preds(clf_logits, multi_label)
clf_acc = 0 if multi_label else (clf_preds == clf_labels).sum().item() / clf_labels.shape[0]
if batch:
return f'clf_acc: {clf_acc:.3f}', None, None, None
clf_roc = 0
if 'ogb' in dataset_name:
evaluator = Evaluator(name='-'.join(dataset_name.split('_')))
clf_roc = evaluator.eval({'y_pred': clf_logits, 'y_true': clf_labels})['rocauc']
att_auroc = roc_auc_score(exp_labels, att) if np.unique(exp_labels).shape[0] > 1 else 0
desc = f'clf_acc: {clf_acc:.3f}, clf_roc: {clf_roc:.3f}, att_roc: {att_auroc:.3f}'
return desc, att_auroc, clf_acc, clf_roc
def update_best_epoch_res(gsat, train_res, valid_res, test_res, metric_dict, dataset_name, epoch, model_dir):
assert len(train_res) == 5
main_metric_idx = 3 if 'ogb' in dataset_name else 2 # clf_roc or clf_acc
current_r = gsat.get_r(gsat.decay_interval, gsat.decay_r, epoch, final_r=gsat.final_r)
model_dir.mkdir(parents=True, exist_ok=True)
if (current_r == gsat.final_r) and ((valid_res[main_metric_idx] > metric_dict['metric/best_clf_valid'])
or (valid_res[main_metric_idx] == metric_dict['metric/best_clf_valid'] and valid_res[4] < metric_dict['metric/best_clf_valid_loss'])):
metric_dict = {'metric/best_clf_epoch': epoch, 'metric/best_clf_valid_loss': valid_res[4],
'metric/best_clf_train': train_res[main_metric_idx], 'metric/best_clf_valid': valid_res[main_metric_idx], 'metric/best_clf_test': test_res[main_metric_idx],
'metric/best_x_roc_train': train_res[0], 'metric/best_x_roc_valid': valid_res[0], 'metric/best_x_roc_test': test_res[0],
'metric/best_x_precision_train': train_res[1], 'metric/best_x_precision_valid': valid_res[1], 'metric/best_x_precision_test': test_res[1]}
save_checkpoint(gsat, model_dir, model_name='gsat_epoch_' + str(epoch))
return metric_dict
def get_viz_idx(test_set, dataset_name, num_viz_samples):
y_dist = test_set.data.y.numpy().reshape(-1)
num_nodes = np.array([each.x.shape[0] for each in test_set])
classes = np.unique(y_dist)
res = []
for each_class in classes:
tag = 'class_' + str(each_class)
if dataset_name == 'Graph-SST2':
condi = (y_dist == each_class) * (num_nodes > 5) * (num_nodes < 10) # in case too short or too long
candidate_set = np.nonzero(condi)[0]
else:
candidate_set = np.nonzero(y_dist == each_class)[0]
idx = np.random.choice(candidate_set, num_viz_samples, replace=False)
res.append((idx, tag))
if dataset_name == 'mutag':
for each_class in classes:
tag = 'class_' + str(each_class)
candidate_set = np.nonzero(y_dist == each_class)[0]
idx = np.random.choice(candidate_set, num_viz_samples, replace=False)
res.append((idx, tag))
return res
def visualize_results(gsat, all_viz_set, test_set, num_viz_samples, dataset_name, use_edge_attr):
figsize = 10
fig, axes = plt.subplots(len(all_viz_set), num_viz_samples, figsize=(figsize*num_viz_samples, figsize*len(all_viz_set)*0.8))
for class_idx, (idx, tag) in enumerate(all_viz_set):
viz_set = test_set[idx]
data = next(iter(DataLoader(viz_set, batch_size=len(idx), shuffle=False)))
data = process_data(data, use_edge_attr)
batch_att, _, _ = eval_one_batch(gsat, data.to(gsat.device), epoch=500)
for i in tqdm(range(len(viz_set))):
mol_type, coor = None, None
if dataset_name == 'mutag':
node_dict = {0: 'C', 1: 'O', 2: 'Cl', 3: 'H', 4: 'N', 5: 'F', 6: 'Br', 7: 'S', 8: 'P', 9: 'I', 10: 'Na', 11: 'K', 12: 'Li', 13: 'Ca'}
mol_type = {k: node_dict[v.item()] for k, v in enumerate(viz_set[i].node_type)}
elif dataset_name == 'Graph-SST2':
mol_type = {k: v for k, v in enumerate(viz_set[i].sentence_tokens)}
num_nodes = data.x.shape[0]
x = np.linspace(0, 1, num_nodes)
y = np.ones_like(x)
coor = np.stack([x, y], axis=1)
elif dataset_name == 'ogbg_molhiv':
element_idxs = {k: int(v+1) for k, v in enumerate(viz_set[i].x[:, 0])}
mol_type = {k: Chem.PeriodicTable.GetElementSymbol(Chem.GetPeriodicTable(), int(v)) for k, v in element_idxs.items()}
elif dataset_name == 'mnist':
raise NotImplementedError
node_subset = data.batch == i
_, edge_mask = subgraph(node_subset.cpu(), data.edge_index.cpu(), edge_attr=batch_att)
node_label = viz_set[i].node_label.reshape(-1) if viz_set[i].get('node_label', None) is not None else torch.zeros(viz_set[i].x.shape[0])
visualize_a_graph(viz_set[i].edge_index, edge_mask, node_label, dataset_name, axes[class_idx, i], norm=True, mol_type=mol_type, coor=coor)
# axes[class_idx, i].axis('off')
fig.tight_layout()
each_plot_len = 1/len(viz_set)
for num in range(1, len(viz_set)):
line = plt.Line2D((each_plot_len*num, each_plot_len*num), (0, 1), color="gray", linewidth=1, linestyle='dashed', dashes=(5, 10))
fig.add_artist(line)
each_plot_width = 1/len(all_viz_set)
for num in range(1, len(all_viz_set)):
line = plt.Line2D((0, 1), (each_plot_width*num, each_plot_width*num), color="gray", linestyle='dashed', dashes=(5, 10))
fig.add_artist(line)
def visualize_a_graph(edge_index, edge_att, node_label, dataset_name, ax, coor=None, norm=False, mol_type=None, nodesize=300):
if norm: # for better visualization
edge_att = edge_att**10
edge_att = (edge_att - edge_att.min()) / (edge_att.max() - edge_att.min() + 1e-6)
if mol_type is None or dataset_name == 'Graph-SST2':
atom_colors = {0: '#E49D1C', 1: '#FF5357', 2: '#a1c569', 3: '#69c5ba'}
node_colors = [None for _ in range(node_label.shape[0])]
for y_idx in range(node_label.shape[0]):
node_colors[y_idx] = atom_colors[node_label[y_idx].int().tolist()]
else:
node_color = ['#29A329', 'lime', '#F0EA00', 'maroon', 'brown', '#E49D1C', '#4970C6', '#FF5357']
element_idxs = {k: Chem.PeriodicTable.GetAtomicNumber(Chem.GetPeriodicTable(), v) for k, v in mol_type.items()}
node_colors = [node_color[(v - 1) % len(node_color)] for k, v in element_idxs.items()]
data = Data(edge_index=edge_index, att=edge_att, y=node_label, num_nodes=node_label.size(0)).to('cpu')
G = to_networkx(data, node_attrs=['y'], edge_attrs=['att'])
# calculate Graph positions
if coor is None:
pos = nx.kamada_kawai_layout(G)
else:
pos = {idx: each.tolist() for idx, each in enumerate(coor)}
for source, target, data in G.edges(data=True):
ax.annotate(
'', xy=pos[target], xycoords='data', xytext=pos[source],
textcoords='data', arrowprops=dict(
arrowstyle="->" if dataset_name == 'Graph-SST2' else '-',
lw=max(data['att'], 0) * 3,
alpha=max(data['att'], 0), # alpha control transparency
color='black', # color control color
shrinkA=np.sqrt(nodesize) / 2.0 + 1,
shrinkB=np.sqrt(nodesize) / 2.0 + 1,
connectionstyle='arc3,rad=0.4' if dataset_name == 'Graph-SST2' else 'arc3'
))
if mol_type is not None:
nx.draw_networkx_labels(G, pos, mol_type, ax=ax)
if dataset_name != 'Graph-SST2':
nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=nodesize, ax=ax)
nx.draw_networkx_edges(G, pos, width=1, edge_color='gray', arrows=False, alpha=0.1, ax=ax)
else:
nx.draw_networkx_edges(G, pos, width=1, edge_color='gray', arrows=False, alpha=0.1, ax=ax, connectionstyle='arc3,rad=0.4')