Skip to content

Commit 2aa9583

Browse files
committed
Cleaned README
1 parent 9fd5e60 commit 2aa9583

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

README.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -49,30 +49,30 @@ To install all of the libraries, run the commands in the "install.txt" file. The
4949
### Pandas Data Science
5050

5151
#### Basic Dataset Information
52-
**Read in a CSV dataset:** `pd.DataFrame.from_csv("csv_file")` OR `pd.read_csv("csv_file")`
53-
**Read in an Excel dataset:** `pd.read_excel("excel_file")`
54-
**Basic dataset feature info:** `df.info()`
55-
**Basic dataset statistics:** `print(df.describe())`
56-
**Print dataframe in a table:** `print(tabulate(print_table, headers=headers))` where "print_table" is a list of lists and "headers" is a list of the string headers
52+
- **Read in a CSV dataset:** `pd.DataFrame.from_csv("csv_file")` OR `pd.read_csv("csv_file")`
53+
- **Read in an Excel dataset:** `pd.read_excel("excel_file")`
54+
- **Basic dataset feature info:** `df.info()`
55+
- **Basic dataset statistics:** `print(df.describe())`
56+
- **Print dataframe in a table:** `print(tabulate(print_table, headers=headers))` where "print_table" is a list of lists and "headers" is a list of the string headers
5757

5858
#### Basic Data Handling
59-
**Drop missing data:** `df.dropna(axis=0, how='any')` Return object with labels on given axis omitted where alternately any or all of the data are missing
60-
**Replace missing data:** `df.replace(to_replace=None, value=None)` Replace values given in "to_replace" with "value".
61-
**Check for NANs:** `pd.isnull(object)` Detect missing values (NaN in numeric arrays, None/NaN in object arrays)
62-
**Drop a feature:** `df.drop('feature_variable_name', axis=1)` axis is either 0 for rows, 1 for columns
63-
**Convert object type to float:** `pd.to_numeric(df["feature_name"], errors='coerce')` Convert object types to numeric to be able to perform compuations
64-
**Convert DF to numpy array:** `df.as_matrix()`
65-
**Get first "n" rows:** `df.head([n])`
66-
**Get data by feature name:** `df.loc[feature_name]`
59+
- **Drop missing data:** `df.dropna(axis=0, how='any')` Return object with labels on given axis omitted where alternately any or all of the data are missing
60+
- **Replace missing data:** `df.replace(to_replace=None, value=None)` Replace values given in "to_replace" with "value".
61+
- **Check for NANs:** `pd.isnull(object)` Detect missing values (NaN in numeric arrays, None/NaN in object arrays)
62+
- **Drop a feature:** `df.drop('feature_variable_name', axis=1)` axis is either 0 for rows, 1 for columns
63+
- **Convert object type to float:** `pd.to_numeric(df["feature_name"], errors='coerce')` Convert object types to numeric to be able to perform compuations
64+
- **Convert DF to numpy array:** `df.as_matrix()`
65+
- **Get first "n" rows:** `df.head([n])`
66+
- **Get data by feature name:** `df.loc[feature_name]`
6767

6868
#### Basic Plotting
69-
**Area plot:** `df.plot.area([x, y])`
70-
**Vertical bar plot:** `df.plot.bar([x, y])`
71-
**Horizontal bar plot:** `df.plot.barh([x, y])`
72-
**Boxplot:** `df.plot.box([by])`
73-
**Histogram:** `df.plot.hist([by, bins])`
74-
**Line plot:** `df.plot.line([x, y])`
75-
**Pie chart:** `df.plot.pie([y])`
69+
- **Area plot:** `df.plot.area([x, y])`
70+
- **Vertical bar plot:** `df.plot.bar([x, y])`
71+
- **Horizontal bar plot:** `df.plot.barh([x, y])`
72+
- **Boxplot:** `df.plot.box([by])`
73+
- **Histogram:** `df.plot.hist([by, bins])`
74+
- **Line plot:** `df.plot.line([x, y])`
75+
- **Pie chart:** `df.plot.pie([y])`
7676

7777

7878

0 commit comments

Comments
 (0)