-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
operator_utils.py
345 lines (285 loc) · 11.4 KB
/
operator_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# -*- coding: utf-8 -*-
"""This file is part of the TPOT library.
TPOT was primarily developed at the University of Pennsylvania by:
- Randal S. Olson ([email protected])
- Weixuan Fu ([email protected])
- Daniel Angell ([email protected])
- and many more generous open source contributors
TPOT is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
TPOT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with TPOT. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from sklearn.base import BaseEstimator, is_classifier, is_regressor
from sklearn.gaussian_process.kernels import Kernel
import inspect
class Operator(object):
"""Base class for operators in TPOT."""
root = False # Whether this operator type can be the root of the tree
import_hash = None
sklearn_class = None
arg_types = None
class ARGType(object):
"""Base class for parameter specifications."""
pass
def source_decode(sourcecode, verbose=0):
"""Decode operator source and import operator class.
Parameters
----------
sourcecode: string
a string of operator source (e.g 'sklearn.feature_selection.RFE')
verbose: int, optional (default: 0)
How much information TPOT communicates while it's running.
0 = none, 1 = minimal, 2 = high, 3 = all.
if verbose > 2 then ImportError will rasie during initialization
Returns
-------
import_str: string
a string of operator class source (e.g. 'sklearn.feature_selection')
op_str: string
a string of operator class (e.g. 'RFE')
op_obj: object
operator class (e.g. RFE)
"""
tmp_path = sourcecode.split(".")
op_str = tmp_path.pop()
import_str = ".".join(tmp_path)
try:
if sourcecode.startswith("tpot."):
exec("from {} import {}".format(import_str[4:], op_str))
else:
exec("from {} import {}".format(import_str, op_str))
op_obj = eval(op_str)
except Exception as e:
if verbose > 2:
raise ImportError("Error: could not import {}.\n{}".format(sourcecode, e))
else:
print(
"Warning: {} is not available and will not be used by TPOT.".format(
sourcecode
)
)
op_obj = None
return import_str, op_str, op_obj
def set_sample_weight(pipeline_steps, sample_weight=None):
"""Recursively iterates through all objects in the pipeline and sets sample weight.
Parameters
----------
pipeline_steps: array-like
List of (str, obj) tuples from a scikit-learn pipeline or related object
sample_weight: array-like
List of sample weight
Returns
-------
sample_weight_dict:
A dictionary of sample_weight
"""
sample_weight_dict = {}
if not isinstance(sample_weight, type(None)):
for (pname, obj) in pipeline_steps:
if inspect.getargspec(obj.fit).args.count("sample_weight"):
step_sw = pname + "__sample_weight"
sample_weight_dict[step_sw] = sample_weight
if sample_weight_dict:
return sample_weight_dict
else:
return None
def _is_selector(estimator):
selector_attributes = [
"get_support",
"transform",
"inverse_transform",
"fit_transform",
]
return all(hasattr(estimator, attr) for attr in selector_attributes)
def _is_transformer(estimator):
return hasattr(estimator, "fit_transform")
def _is_resampler(estimator):
return hasattr(estimator, "fit_resample")
def ARGTypeClassFactory(classname, prange, BaseClass=ARGType):
"""Dynamically create parameter type class.
Parameters
----------
classname: string
parameter name in a operator
prange: list
list of values for the parameter in a operator
BaseClass: Class
inherited BaseClass for parameter
Returns
-------
Class
parameter class
"""
return type(classname, (BaseClass,), {"values": prange})
def TPOTOperatorClassFactory(
opsourse, opdict, BaseClass=Operator, ArgBaseClass=ARGType, verbose=0
):
"""Dynamically create operator class.
Parameters
----------
opsourse: string
operator source in config dictionary (key)
opdict: dictionary
operator params in config dictionary (value)
regression: bool
True if it can be used in TPOTRegressor
classification: bool
True if it can be used in TPOTClassifier
BaseClass: Class
inherited BaseClass for operator
ArgBaseClass: Class
inherited BaseClass for parameter
verbose: int, optional (default: 0)
How much information TPOT communicates while it's running.
0 = none, 1 = minimal, 2 = high, 3 = all.
if verbose > 2 then ImportError will rasie during initialization
Returns
-------
op_class: Class
a new class for a operator
arg_types: list
a list of parameter class
"""
class_profile = {}
dep_op_list = {} # list of nested estimator/callable function
dep_op_type = {} # type of nested estimator/callable function
import_str, op_str, op_obj = source_decode(opsourse, verbose=verbose)
if not op_obj:
return None, None
else:
# define if the operator can be the root of a pipeline
if is_classifier(op_obj):
class_profile["root"] = True
optype = "Classifier"
elif is_regressor(op_obj):
class_profile["root"] = True
optype = "Regressor"
elif _is_selector(op_obj):
optype = "Selector"
elif _is_transformer(op_obj):
optype = "Transformer"
elif _is_resampler(op_obj):
optype = "Resampler"
else:
raise ValueError(
"optype must be one of: Classifier, Regressor, Selector, Transformer, or Resampler"
)
@classmethod
def op_type(cls):
"""Return the operator type.
Possible values:
"Classifier", "Regressor", "Selector", "Transformer"
"""
return optype
class_profile["type"] = op_type
class_profile["sklearn_class"] = op_obj
import_hash = {}
import_hash[import_str] = [op_str]
arg_types = []
for pname in sorted(opdict.keys()):
prange = opdict[pname]
if not isinstance(prange, dict):
classname = "{}__{}".format(op_str, pname)
arg_types.append(ARGTypeClassFactory(classname, prange, ArgBaseClass))
else:
for dkey, dval in prange.items():
dep_import_str, dep_op_str, dep_op_obj = source_decode(
dkey, verbose=verbose
)
if dep_import_str in import_hash:
import_hash[dep_import_str].append(dep_op_str)
else:
import_hash[dep_import_str] = [dep_op_str]
dep_op_list[pname] = dep_op_str
dep_op_type[pname] = dep_op_obj
if dval:
for dpname in sorted(dval.keys()):
dprange = dval[dpname]
classname = "{}__{}__{}".format(op_str, dep_op_str, dpname)
arg_types.append(
ARGTypeClassFactory(classname, dprange, ArgBaseClass)
)
class_profile["arg_types"] = tuple(arg_types)
class_profile["import_hash"] = import_hash
class_profile["dep_op_list"] = dep_op_list
class_profile["dep_op_type"] = dep_op_type
@classmethod
def parameter_types(cls):
"""Return the argument and return types of an operator.
Parameters
----------
None
Returns
-------
parameter_types: tuple
Tuple of the DEAP parameter types and the DEAP return type for the
operator
"""
return ([np.ndarray] + arg_types, np.ndarray) # (input types, return types)
class_profile["parameter_types"] = parameter_types
@classmethod
def export(cls, *args):
"""Represent the operator as a string so that it can be exported to a file.
Parameters
----------
args
Arbitrary arguments to be passed to the operator
Returns
-------
export_string: str
String representation of the sklearn class with its parameters in
the format:
SklearnClassName(param1="val1", param2=val2)
"""
op_arguments = []
if dep_op_list:
dep_op_arguments = {}
for dep_op_str in dep_op_list.values():
dep_op_arguments[dep_op_str] = []
for arg_class, arg_value in zip(arg_types, args):
aname_split = arg_class.__name__.split("__")
if isinstance(arg_value, str):
arg_value = '"{}"'.format(arg_value)
if len(aname_split) == 2: # simple parameter
op_arguments.append("{}={}".format(aname_split[-1], arg_value))
# Parameter of internal operator as a parameter in the
# operator, usually in Selector
else:
dep_op_arguments[aname_split[1]].append(
"{}={}".format(aname_split[-1], arg_value)
)
tmp_op_args = []
if dep_op_list:
# To make sure the inital operators is the first parameter just
# for better persentation
for dep_op_pname, dep_op_str in dep_op_list.items():
arg_value = dep_op_str # a callable function, e.g scoring function
doptype = dep_op_type[dep_op_pname]
if inspect.isclass(doptype): # a estimator
if (
issubclass(doptype, BaseEstimator)
or is_classifier(doptype)
or is_regressor(doptype)
or _is_transformer(doptype)
or _is_resampler(doptype)
or issubclass(doptype, Kernel)
):
arg_value = "{}({})".format(
dep_op_str, ", ".join(dep_op_arguments[dep_op_str])
)
tmp_op_args.append("{}={}".format(dep_op_pname, arg_value))
op_arguments = tmp_op_args + op_arguments
return "{}({})".format(op_obj.__name__, ", ".join(op_arguments))
class_profile["export"] = export
op_classname = "TPOT_{}".format(op_str)
op_class = type(op_classname, (BaseClass,), class_profile)
op_class.__name__ = op_str
return op_class, arg_types