This repository has been archived by the owner on Jun 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 374
/
utils.py
677 lines (565 loc) · 26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# -*- coding: utf-8 -*-
"""Lifetimes utils and helpers."""
from __future__ import division
import numpy as np
import pandas as pd
import dill
pd.options.mode.chained_assignment = None
__all__ = [
"calibration_and_holdout_data",
"summary_data_from_transaction_data",
"calculate_alive_path",
"expected_cumulative_transactions",
]
class ConvergenceError(ValueError):
"""
Convergence Error Class.
"""
pass
def calibration_and_holdout_data(
transactions,
customer_id_col,
datetime_col,
calibration_period_end,
observation_period_end=None,
freq="D",
freq_multiplier=1,
datetime_format=None,
monetary_value_col=None,
include_first_transaction=False,
):
"""
Create a summary of each customer over a calibration and holdout period.
This function creates a summary of each customer over a calibration and
holdout period (training and testing, respectively).
It accepts transaction data, and returns a DataFrame of sufficient statistics.
Parameters
----------
transactions: :obj: DataFrame
a Pandas DataFrame that contains the customer_id col and the datetime col.
customer_id_col: string
the column in transactions DataFrame that denotes the customer_id
datetime_col: string
the column in transactions that denotes the datetime the purchase was made.
calibration_period_end: :obj: datetime
a period to limit the calibration to, inclusive.
observation_period_end: :obj: datetime, optional
a string or datetime to denote the final date of the study.
Events after this date are truncated. If not given, defaults to the max 'datetime_col'.
freq: string, optional
Default: 'D' for days. Possible values listed here:
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
freq_multiplier: int, optional
Default: 1. Useful for getting exact recency & T. Example:
With freq='D' and freq_multiplier=1, we get recency=591 and T=632
With freq='h' and freq_multiplier=24, we get recency=590.125 and T=631.375
datetime_format: string, optional
a string that represents the timestamp format. Useful if Pandas can't understand
the provided format.
monetary_value_col: string, optional
the column in transactions that denotes the monetary value of the transaction.
Optional, only needed for customer lifetime value estimation models.
include_first_transaction: bool, optional
Default: False
By default the first transaction is not included while calculating frequency and
monetary_value. Can be set to True to include it.
Should be False if you are going to use this data with any fitters in lifetimes package
Returns
-------
:obj: DataFrame
A dataframe with columns frequency_cal, recency_cal, T_cal, frequency_holdout, duration_holdout
If monetary_value_col isn't None, the dataframe will also have the columns monetary_value_cal and
monetary_value_holdout.
"""
def to_period(d):
return d.to_period(freq)
if observation_period_end is None:
observation_period_end = transactions[datetime_col].max()
transaction_cols = [customer_id_col, datetime_col]
if monetary_value_col:
transaction_cols.append(monetary_value_col)
transactions = transactions[transaction_cols].copy()
transactions[datetime_col] = pd.to_datetime(transactions[datetime_col], format=datetime_format)
observation_period_end = pd.to_datetime(observation_period_end, format=datetime_format)
calibration_period_end = pd.to_datetime(calibration_period_end, format=datetime_format)
# create calibration dataset
calibration_transactions = transactions.loc[transactions[datetime_col] <= calibration_period_end]
calibration_summary_data = summary_data_from_transaction_data(
calibration_transactions,
customer_id_col,
datetime_col,
datetime_format=datetime_format,
observation_period_end=calibration_period_end,
freq=freq,
freq_multiplier=freq_multiplier,
monetary_value_col=monetary_value_col,
include_first_transaction=include_first_transaction,
)
calibration_summary_data.columns = [c + "_cal" for c in calibration_summary_data.columns]
# create holdout dataset
holdout_transactions = transactions.loc[
(observation_period_end >= transactions[datetime_col]) & (transactions[datetime_col] > calibration_period_end)
]
if holdout_transactions.empty:
raise ValueError(
"There is no data available. Check the `observation_period_end` and `calibration_period_end` and confirm that values in `transactions` occur prior to those dates."
)
holdout_transactions[datetime_col] = holdout_transactions[datetime_col].map(to_period)
holdout_summary_data = (
holdout_transactions.groupby([customer_id_col, datetime_col], sort=False)
.agg(lambda r: 1)
.groupby(level=customer_id_col)
.agg(["count"])
)
holdout_summary_data.columns = ["frequency_holdout"]
if monetary_value_col:
holdout_summary_data["monetary_value_holdout"] = holdout_transactions.groupby(customer_id_col)[
monetary_value_col
].mean()
combined_data = calibration_summary_data.join(holdout_summary_data, how="left")
combined_data.fillna(0, inplace=True)
delta_time = (to_period(observation_period_end) - to_period(calibration_period_end)).n
combined_data["duration_holdout"] = delta_time / freq_multiplier
return combined_data
def _find_first_transactions(
transactions,
customer_id_col,
datetime_col,
monetary_value_col=None,
datetime_format=None,
observation_period_end=None,
freq="D",
):
"""
Return dataframe with first transactions.
This takes a DataFrame of transaction data of the form:
customer_id, datetime [, monetary_value]
and appends a column named 'repeated' to the transaction log which indicates which rows
are repeated transactions for that customer_id.
Parameters
----------
transactions: :obj: DataFrame
a Pandas DataFrame that contains the customer_id col and the datetime col.
customer_id_col: string
the column in transactions DataFrame that denotes the customer_id
datetime_col: string
the column in transactions that denotes the datetime the purchase was made.
monetary_value_col: string, optional
the column in transactions that denotes the monetary value of the transaction.
Optional, only needed for customer lifetime value estimation models.
observation_period_end: :obj: datetime
a string or datetime to denote the final date of the study.
Events after this date are truncated. If not given, defaults to the max 'datetime_col'.
datetime_format: string, optional
a string that represents the timestamp format. Useful if Pandas can't understand
the provided format.
freq: string, optional
Default: 'D' for days. Possible values listed here:
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
"""
if observation_period_end is None:
observation_period_end = transactions[datetime_col].max()
if type(observation_period_end) == pd.Period:
observation_period_end = observation_period_end.to_timestamp()
select_columns = [customer_id_col, datetime_col]
if monetary_value_col:
select_columns.append(monetary_value_col)
transactions = transactions[select_columns].sort_values(select_columns).copy()
# make sure the date column uses datetime objects, and use Pandas' DateTimeIndex.to_period()
# to convert the column to a PeriodIndex which is useful for time-wise grouping and truncating
transactions[datetime_col] = pd.to_datetime(transactions[datetime_col], format=datetime_format)
transactions = transactions.set_index(datetime_col).to_period(freq).to_timestamp()
transactions = transactions.loc[(transactions.index <= observation_period_end)].reset_index()
period_groupby = transactions.groupby([datetime_col, customer_id_col], sort=False, as_index=False)
if monetary_value_col:
# when we have a monetary column, make sure to sum together any values in the same period
period_transactions = period_groupby.sum()
else:
# by calling head() on the groupby object, the datetime_col and customer_id_col columns
# will be reduced
period_transactions = period_groupby.head(1)
# initialize a new column where we will indicate which are the first transactions
period_transactions["first"] = False
# find all of the initial transactions and store as an index
first_transactions = period_transactions.groupby(customer_id_col, sort=True, as_index=False).head(1).index
# mark the initial transactions as True
period_transactions.loc[first_transactions, "first"] = True
select_columns.append("first")
# reset datetime_col to period
period_transactions[datetime_col] = pd.Index(period_transactions[datetime_col]).to_period(freq)
return period_transactions[select_columns]
def summary_data_from_transaction_data(
transactions,
customer_id_col,
datetime_col,
monetary_value_col=None,
datetime_format=None,
observation_period_end=None,
freq="D",
freq_multiplier=1,
include_first_transaction=False,
):
"""
Return summary data from transactions.
This transforms a DataFrame of transaction data of the form:
customer_id, datetime [, monetary_value]
to a DataFrame of the form:
customer_id, frequency, recency, T [, monetary_value]
Parameters
----------
transactions: :obj: DataFrame
a Pandas DataFrame that contains the customer_id col and the datetime col.
customer_id_col: string
the column in transactions DataFrame that denotes the customer_id
datetime_col: string
the column in transactions that denotes the datetime the purchase was made.
monetary_value_col: string, optional
the columns in the transactions that denotes the monetary value of the transaction.
Optional, only needed for customer lifetime value estimation models.
observation_period_end: datetime, optional
a string or datetime to denote the final date of the study.
Events after this date are truncated. If not given, defaults to the max 'datetime_col'.
datetime_format: string, optional
a string that represents the timestamp format. Useful if Pandas can't understand
the provided format.
freq: string, optional
Default: 'D' for days. Possible values listed here:
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
freq_multiplier: int, optional
Default: 1. Useful for getting exact recency & T. Example:
With freq='D' and freq_multiplier=1, we get recency=591 and T=632
With freq='h' and freq_multiplier=24, we get recency=590.125 and T=631.375
include_first_transaction: bool, optional
Default: False
By default the first transaction is not included while calculating frequency and
monetary_value. Can be set to True to include it.
Should be False if you are going to use this data with any fitters in lifetimes package
Returns
-------
:obj: DataFrame:
customer_id, frequency, recency, T [, monetary_value]
"""
if observation_period_end is None:
observation_period_end = (
pd.to_datetime(transactions[datetime_col].max(), format=datetime_format).to_period(freq).to_timestamp()
)
else:
observation_period_end = (
pd.to_datetime(observation_period_end, format=datetime_format).to_period(freq).to_timestamp()
)
# label all of the repeated transactions
repeated_transactions = _find_first_transactions(
transactions, customer_id_col, datetime_col, monetary_value_col, datetime_format, observation_period_end, freq
)
# reset datetime_col to timestamp
repeated_transactions[datetime_col] = pd.Index(repeated_transactions[datetime_col]).to_timestamp()
# count all orders by customer.
customers = repeated_transactions.groupby(customer_id_col, sort=False)[datetime_col].agg(["min", "max", "count"])
if not include_first_transaction:
# subtract 1 from count, as we ignore their first order.
customers["frequency"] = customers["count"] - 1
else:
customers["frequency"] = customers["count"]
customers["T"] = (observation_period_end - customers["min"]) / np.timedelta64(1, freq) / freq_multiplier
customers["recency"] = (customers["max"] - customers["min"]) / np.timedelta64(1, freq) / freq_multiplier
summary_columns = ["frequency", "recency", "T"]
if monetary_value_col:
if not include_first_transaction:
# create an index of all the first purchases
first_purchases = repeated_transactions[repeated_transactions["first"]].index
# by setting the monetary_value cells of all the first purchases to NaN,
# those values will be excluded from the mean value calculation
repeated_transactions.loc[first_purchases, monetary_value_col] = np.nan
customers["monetary_value"] = (
repeated_transactions.groupby(customer_id_col)[monetary_value_col].mean().fillna(0)
)
summary_columns.append("monetary_value")
return customers[summary_columns].astype(float)
def calculate_alive_path(
model,
transactions,
datetime_col,
t,
freq="D"
):
"""
Calculate alive path for plotting alive history of user.
Uses the ``conditional_probability_alive()`` method of the model to achieve the path.
Parameters
----------
model:
A fitted lifetimes model
transactions: DataFrame
a Pandas DataFrame containing the transactions history of the customer_id
datetime_col: string
the column in the transactions that denotes the datetime the purchase was made
t: array_like
the number of time units since the birth for which we want to draw the p_alive
freq: string, optional
Default: 'D' for days. Possible values listed here:
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
Returns
-------
:obj: Series
A pandas Series containing the p_alive as a function of T (age of the customer)
"""
customer_history = transactions[[datetime_col]].copy()
customer_history[datetime_col] = pd.to_datetime(customer_history[datetime_col])
customer_history = customer_history.set_index(datetime_col)
# Add transactions column
customer_history["transactions"] = 1
# for some reason fillna(0) not working for resample in pandas with python 3.x,
# changed to replace
purchase_history = customer_history.resample(freq).sum().replace(np.nan, 0)["transactions"].values
extra_columns = t + 1 - len(purchase_history)
customer_history = pd.DataFrame(np.append(purchase_history, [0] * extra_columns), columns=["transactions"])
# add T column
customer_history["T"] = np.arange(customer_history.shape[0])
# add cumulative transactions column
customer_history["transactions"] = customer_history["transactions"].apply(lambda t: int(t > 0))
customer_history["frequency"] = customer_history["transactions"].cumsum() - 1 # first purchase is ignored
# Add t_x column
customer_history["recency"] = customer_history.apply(
lambda row: row["T"] if row["transactions"] != 0 else np.nan, axis=1
)
customer_history["recency"] = customer_history["recency"].fillna(method="ffill").fillna(0)
return customer_history.apply(
lambda row: model.conditional_probability_alive(row["frequency"], row["recency"], row["T"]), axis=1
)
def _scale_time(
age
):
"""
Create a scalar such that the maximum age is 1.
"""
return 1.0 / age.max()
def _check_inputs(
frequency,
recency=None,
T=None,
monetary_value=None
):
"""
Check validity of inputs.
Raises ValueError when checks failed.
The checks go sequentially from recency, to frequency and monetary value:
- recency > T.
- recency[frequency == 0] != 0)
- recency < 0
- zero length vector in frequency, recency or T
- non-integer values in the frequency vector.
- non-positive (<= 0) values in the monetary_value vector
Parameters
----------
frequency: array_like
the frequency vector of customers' purchases (denoted x in literature).
recency: array_like, optional
the recency vector of customers' purchases (denoted t_x in literature).
T: array_like, optional
the vector of customers' age (time since first purchase)
monetary_value: array_like, optional
the monetary value vector of customer's purchases (denoted m in literature).
"""
if recency is not None:
if T is not None and np.any(recency > T):
raise ValueError("Some values in recency vector are larger than T vector.")
if np.any(recency[frequency == 0] != 0):
raise ValueError("There exist non-zero recency values when frequency is zero.")
if np.any(recency < 0):
raise ValueError("There exist negative recency (ex: last order set before first order)")
if any(x.shape[0] == 0 for x in [recency, frequency, T]):
raise ValueError("There exists a zero length vector in one of frequency, recency or T.")
if np.sum((frequency - frequency.astype(int)) ** 2) != 0:
raise ValueError("There exist non-integer values in the frequency vector.")
if monetary_value is not None and np.any(monetary_value <= 0):
raise ValueError("There exist non-positive (<= 0) values in the monetary_value vector.")
# TODO: raise warning if np.any(freqency > T) as this means that there are
# more order-periods than periods.
def _customer_lifetime_value(
transaction_prediction_model,
frequency,
recency,
T,
monetary_value,
time=12,
discount_rate=0.01,
freq="D"
):
"""
Compute the average lifetime value for a group of one or more customers.
This method computes the average lifetime value for a group of one or more customers.
It also applies Discounted Cash Flow.
Parameters
----------
transaction_prediction_model:
the model to predict future transactions
frequency: array_like
the frequency vector of customers' purchases (denoted x in literature).
recency: array_like
the recency vector of customers' purchases (denoted t_x in literature).
T: array_like
the vector of customers' age (time since first purchase)
monetary_value: array_like
the monetary value vector of customer's purchases (denoted m in literature).
time: int, optional
the lifetime expected for the user in months. Default: 12
discount_rate: float, optional
the monthly adjusted discount rate. Default: 1
Returns
-------
:obj: Series
series with customer ids as index and the estimated customer lifetime values as values
"""
df = pd.DataFrame(index=range(len(frequency)))
df["clv"] = 0 # initialize the clv column to zeros
steps = np.arange(1, time + 1)
factor = {"W": 4.345, "M": 1.0, "D": 30, "H": 30 * 24}[freq]
for i in steps * factor:
# since the prediction of number of transactions is cumulative, we have to subtract off the previous periods
expected_number_of_transactions = transaction_prediction_model.predict(
i, frequency, recency, T
) - transaction_prediction_model.predict(i - factor, frequency, recency, T)
# sum up the CLV estimates of all of the periods and apply discounted cash flow
df["clv"] += (monetary_value * expected_number_of_transactions) / (1 + discount_rate) ** (i / factor)
return df["clv"] # return as a series
def expected_cumulative_transactions(
model,
transactions,
datetime_col,
customer_id_col,
t,
datetime_format=None,
freq="D",
freq_multiplier=1,
set_index_date=False,
):
"""
Get expected and actual repeated cumulative transactions.
Uses the ``expected_number_of_purchases_up_to_time()`` method from the fitted model
to predict the cumulative number of purchases.
This function follows the formulation on page 8 of [1]_.
In more detail, we take only the customers who have made their first
transaction before the specific date and then multiply them by the distribution of the
``expected_number_of_purchases_up_to_time()`` for their whole future. Doing that for
all dates and then summing the distributions will give us the *complete cumulative
purchases*.
Parameters
----------
model:
A fitted lifetimes model
transactions: :obj: DataFrame
a Pandas DataFrame containing the transactions history of the customer_id
datetime_col: string
the column in transactions that denotes the datetime the purchase was made.
customer_id_col: string
the column in transactions that denotes the customer_id
t: int
the number of time units since the begining of
data for which we want to calculate cumulative transactions
datetime_format: string, optional
a string that represents the timestamp format. Useful if Pandas can't
understand the provided format.
freq: string, optional
Default: 'D' for days. Possible values listed here:
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
freq_multiplier: int, optional
Default: 1. Useful for getting exact recency & T. Example:
With freq='D' and freq_multiplier=1, we get recency=591 and T=632
With freq='h' and freq_multiplier=24, we get recency=590.125 and T=631.375
set_index_date: bool, optional
when True set date as Pandas DataFrame index, default False - number of time units
Returns
-------
:obj: DataFrame
A dataframe with columns actual, predicted
References
----------
.. [1] Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005),
A Note on Implementing the Pareto/NBD Model in MATLAB.
http://brucehardie.com/notes/008/
"""
start_date = pd.to_datetime(transactions[datetime_col], format=datetime_format).min()
start_period = start_date.to_period(freq)
observation_period_end = start_period + t
# Has an extra column (besides the id and the date)
# with a boolean for when it is a first transaction
repeated_and_first_transactions = _find_first_transactions(
transactions,
customer_id_col,
datetime_col,
datetime_format=datetime_format,
observation_period_end=observation_period_end,
freq=freq,
)
# Mask, first transactions and repeated transactions
first_trans_mask = repeated_and_first_transactions["first"]
repeated_transactions = repeated_and_first_transactions[~first_trans_mask]
first_transactions = repeated_and_first_transactions[first_trans_mask]
date_range = pd.date_range(start_date, periods=t + 1, freq=freq)
date_periods = date_range.to_period(freq)
pred_cum_transactions = []
# First Transactions on Each Day/Freq
first_trans_size = first_transactions.groupby(datetime_col).size()
# In the loop below, we calculate the expected number of purchases for the
# customers who have made their first purchases on a date before the one being
# evaluated.
# Then we sum them to get the cumulative sum up to the specific period.
for i, period in enumerate(date_periods): # index of period and its date
if i % freq_multiplier == 0 and i > 0:
# Periods before the one being evaluated
times = np.array([d.n for d in period - first_trans_size.index])
times = times[times > 0].astype(float) / freq_multiplier
# Array of different expected number of purchases for different times
expected_trans_agg = model.expected_number_of_purchases_up_to_time(times)
# Mask for the number of customers with 1st transactions up to the period
mask = first_trans_size.index < period
# ``expected_trans`` is a float with the cumulative sum of expected transactions
expected_trans = sum(expected_trans_agg * first_trans_size[mask])
pred_cum_transactions.append(expected_trans)
act_trans = repeated_transactions.groupby(datetime_col).size()
act_tracking_transactions = act_trans.reindex(date_periods, fill_value=0)
act_cum_transactions = []
for j in range(1, t // freq_multiplier + 1):
sum_trans = sum(act_tracking_transactions.iloc[: j * freq_multiplier])
act_cum_transactions.append(sum_trans)
if set_index_date:
index = date_periods[freq_multiplier - 1 : -1 : freq_multiplier]
else:
index = range(0, t // freq_multiplier)
df_cum_transactions = pd.DataFrame(
{"actual": act_cum_transactions, "predicted": pred_cum_transactions}, index=index
)
return df_cum_transactions
def _save_obj_without_attr(
obj,
attr_list,
path,
values_to_save=None
):
"""
Save object with attributes from attr_list.
Parameters
----------
obj: obj
Object of class with __dict__ attribute.
attr_list: list
List with attributes to exclude from saving to dill object. If empty
list all attributes will be saved.
path: str
Where to save dill object.
values_to_save: list, optional
Placeholders for original attributes for saving object. If None will be
extended to attr_list length like [None] * len(attr_list)
"""
if values_to_save is None:
values_to_save = [None] * len(attr_list)
saved_attr_dict = {}
for attr, val_save in zip(attr_list, values_to_save):
if attr in obj.__dict__:
item = obj.__dict__.pop(attr)
saved_attr_dict[attr] = item
setattr(obj, attr, val_save)
with open(path, "wb") as out_file:
dill.dump(obj, out_file)
for attr, item in saved_attr_dict.items():
setattr(obj, attr, item)