This repository has been archived by the owner on Jun 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 374
/
plotting.py
677 lines (563 loc) · 19.1 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from lifetimes.utils import calculate_alive_path, expected_cumulative_transactions
from scipy import stats
__all__ = [
"plot_period_transactions",
"plot_calibration_purchases_vs_holdout_purchases",
"plot_frequency_recency_matrix",
"plot_probability_alive_matrix",
"plot_expected_repeat_purchases",
"plot_history_alive",
"plot_cumulative_transactions",
"plot_incremental_transactions",
"plot_transaction_rate_heterogeneity",
"plot_dropout_rate_heterogeneity",
]
def coalesce(*args):
return next(s for s in args if s is not None)
def plot_period_transactions(
model,
max_frequency=7,
title="Frequency of Repeat Transactions",
xlabel="Number of Calibration Period Transactions",
ylabel="Customers",
**kwargs
):
"""
Plot a figure with period actual and predicted transactions.
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
max_frequency: int, optional
The maximum frequency to plot.
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
kwargs
Passed into the matplotlib.pyplot.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
labels = kwargs.pop("label", ["Actual", "Model"])
n = model.data.shape[0]
simulated_data = model.generate_new_data(size=n)
model_counts = pd.DataFrame(model.data["frequency"].value_counts().sort_index().iloc[:max_frequency])
simulated_counts = pd.DataFrame(simulated_data["frequency"].value_counts().sort_index().iloc[:max_frequency])
combined_counts = model_counts.merge(simulated_counts, how="outer", left_index=True, right_index=True).fillna(0)
combined_counts.columns = labels
ax = combined_counts.plot(kind="bar", **kwargs)
plt.legend()
plt.title(title)
plt.ylabel(ylabel)
plt.xlabel(xlabel)
return ax
def plot_calibration_purchases_vs_holdout_purchases(
model, calibration_holdout_matrix, kind="frequency_cal", n=7, **kwargs
):
"""
Plot calibration purchases vs holdout.
This currently relies too much on the lifetimes.util calibration_and_holdout_data function.
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
calibration_holdout_matrix: pandas DataFrame
DataFrame from calibration_and_holdout_data function.
kind: str, optional
x-axis :"frequency_cal". Purchases in calibration period,
"recency_cal". Age of customer at last purchase,
"T_cal". Age of customer at the end of calibration period,
"time_since_last_purchase". Time since user made last purchase
n: int, optional
Number of ticks on the x axis
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
x_labels = {
"frequency_cal": "Purchases in calibration period",
"recency_cal": "Age of customer at last purchase",
"T_cal": "Age of customer at the end of calibration period",
"time_since_last_purchase": "Time since user made last purchase",
}
summary = calibration_holdout_matrix.copy()
duration_holdout = summary.iloc[0]["duration_holdout"]
summary["model_predictions"] = model.conditional_expected_number_of_purchases_up_to_time(
duration_holdout, summary["frequency_cal"], summary["recency_cal"], summary["T_cal"])
if kind == "time_since_last_purchase":
summary["time_since_last_purchase"] = summary["T_cal"] - summary["recency_cal"]
ax = (
summary.groupby(["time_since_last_purchase"])[["frequency_holdout", "model_predictions"]]
.mean()
.iloc[:n]
.plot(**kwargs)
)
else:
ax = summary.groupby(kind)[["frequency_holdout", "model_predictions"]].mean().iloc[:n].plot(**kwargs)
plt.title("Actual Purchases in Holdout Period vs Predicted Purchases")
plt.xlabel(x_labels[kind])
plt.ylabel("Average of Purchases in Holdout Period")
plt.legend()
return ax
def plot_frequency_recency_matrix(
model,
T=1,
max_frequency=None,
max_recency=None,
title=None,
xlabel="Customer's Historical Frequency",
ylabel="Customer's Recency",
**kwargs
):
"""
Plot recency frequecy matrix as heatmap.
Plot a figure of expected transactions in T next units of time by a customer's frequency and recency.
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
T: fload, optional
Next units of time to make predictions for
max_frequency: int, optional
The maximum frequency to plot. Default is max observed frequency.
max_recency: int, optional
The maximum recency to plot. This also determines the age of the customer.
Default to max observed age.
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
kwargs
Passed into the matplotlib.imshow command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
if max_frequency is None:
max_frequency = int(model.data["frequency"].max())
if max_recency is None:
max_recency = int(model.data["T"].max())
Z = np.zeros((max_recency + 1, max_frequency + 1))
for i, recency in enumerate(np.arange(max_recency + 1)):
for j, frequency in enumerate(np.arange(max_frequency + 1)):
Z[i, j] = model.conditional_expected_number_of_purchases_up_to_time(T, frequency, recency, max_recency)
interpolation = kwargs.pop("interpolation", "none")
ax = plt.subplot(111)
pcm = ax.imshow(Z, interpolation=interpolation, **kwargs)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if title is None:
title = (
"Expected Number of Future Purchases for {} Unit{} of Time,".format(T, "s"[T == 1 :])
+ "\nby Frequency and Recency of a Customer"
)
plt.title(title)
# turn matrix into square
forceAspect(ax)
# plot colorbar beside matrix
plt.colorbar(pcm, ax=ax)
return ax
def plot_probability_alive_matrix(
model,
max_frequency=None,
max_recency=None,
title="Probability Customer is Alive,\nby Frequency and Recency of a Customer",
xlabel="Customer's Historical Frequency",
ylabel="Customer's Recency",
**kwargs
):
"""
Plot probability alive matrix as heatmap.
Plot a figure of the probability a customer is alive based on their
frequency and recency.
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
max_frequency: int, optional
The maximum frequency to plot. Default is max observed frequency.
max_recency: int, optional
The maximum recency to plot. This also determines the age of the customer.
Default to max observed age.
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
kwargs
Passed into the matplotlib.imshow command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
z = model.conditional_probability_alive_matrix(max_frequency, max_recency)
interpolation = kwargs.pop("interpolation", "none")
ax = plt.subplot(111)
pcm = ax.imshow(z, interpolation=interpolation, **kwargs)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
# turn matrix into square
forceAspect(ax)
# plot colorbar beside matrix
plt.colorbar(pcm, ax=ax)
return ax
def plot_expected_repeat_purchases(
model,
title="Expected Number of Repeat Purchases per Customer",
xlabel="Time Since First Purchase",
ax=None,
label=None,
**kwargs
):
"""
Plot expected repeat purchases on calibration period .
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
max_frequency: int, optional
The maximum frequency to plot.
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ax: matplotlib.AxesSubplot, optional
Using user axes
label: str, optional
Label for plot.
kwargs
Passed into the matplotlib.pyplot.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
if ax is None:
ax = plt.subplot(111)
if plt.matplotlib.__version__ >= "1.5":
color_cycle = ax._get_lines.prop_cycler
color = coalesce(kwargs.pop("c", None), kwargs.pop("color", None), next(color_cycle)["color"])
else:
color_cycle = ax._get_lines.color_cycle
color = coalesce(kwargs.pop("c", None), kwargs.pop("color", None), next(color_cycle))
max_T = model.data["T"].max()
times = np.linspace(0, max_T, 100)
ax.plot(times, model.expected_number_of_purchases_up_to_time(times), color=color, label=label, **kwargs)
times = np.linspace(max_T, 1.5 * max_T, 100)
ax.plot(times, model.expected_number_of_purchases_up_to_time(times), color=color, ls="--", **kwargs)
plt.title(title)
plt.xlabel(xlabel)
plt.legend(loc="lower right")
return ax
def plot_history_alive(model, t, transactions, datetime_col, freq="D", start_date=None, ax=None, **kwargs):
"""
Draw a graph showing the probability of being alive for a customer in time.
Parameters
----------
model: lifetimes model
A fitted lifetimes model.
t: int
the number of time units since the birth we want to draw the p_alive
transactions: pandas DataFrame
DataFrame containing the transactions history of the customer_id
datetime_col: str
The column in the transactions that denotes the datetime the purchase was made
freq: str, optional
Default 'D' for days. Other examples= 'W' for weekly
start_date: datetime, optional
Limit xaxis to start date
ax: matplotlib.AxesSubplot, optional
Using user axes
kwargs
Passed into the matplotlib.pyplot.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
if start_date is None:
start_date = min(transactions[datetime_col])
if ax is None:
ax = plt.subplot(111)
# Get purchasing history of user
customer_history = transactions[[datetime_col]].copy()
customer_history.index = pd.DatetimeIndex(customer_history[datetime_col])
# Add transactions column
customer_history["transactions"] = 1
customer_history = customer_history.resample(freq).sum()
# plot alive_path
path = calculate_alive_path(model, transactions, datetime_col, t, freq)
path_dates = pd.date_range(start=min(transactions[datetime_col]), periods=len(path), freq=freq)
plt.plot(path_dates, path, "-", label="P_alive")
# plot buying dates
payment_dates = customer_history[customer_history["transactions"] >= 1].index
plt.vlines(payment_dates.values, ymin=0, ymax=1, colors="r", linestyles="dashed", label="purchases")
plt.ylim(0, 1.0)
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlim(start_date, path_dates[-1])
plt.legend(loc=3)
plt.ylabel("P_alive")
plt.title("History of P_alive")
return ax
def plot_cumulative_transactions(
model,
transactions,
datetime_col,
customer_id_col,
t,
t_cal,
datetime_format=None,
freq="D",
set_index_date=False,
title="Tracking Cumulative Transactions",
xlabel="day",
ylabel="Cumulative Transactions",
ax=None,
**kwargs
):
"""
Plot a figure of the predicted and actual cumulative transactions of users.
Parameters
----------
model: lifetimes model
A fitted lifetimes model
transactions: pandas DataFrame
DataFrame containing the transactions history of the customer_id
datetime_col: str
The column in transactions that denotes the datetime the purchase was made.
customer_id_col: str
The column in transactions that denotes the customer_id
t: float
The number of time units since the begining of
data for which we want to calculate cumulative transactions
t_cal: float
A marker used to indicate where the vertical line for plotting should be.
datetime_format: str, optional
A string that represents the timestamp format. Useful if Pandas
can't understand the provided format.
freq: str, optional
Default 'D' for days, 'W' for weeks, 'M' for months... etc.
Full list here:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
set_index_date: bool, optional
When True set date as Pandas DataFrame index, default False - number of time units
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
ax: matplotlib.AxesSubplot, optional
Using user axes
kwargs
Passed into the pandas.DataFrame.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
if ax is None:
ax = plt.subplot(111)
df_cum_transactions = expected_cumulative_transactions(
model,
transactions,
datetime_col,
customer_id_col,
t,
datetime_format=datetime_format,
freq=freq,
set_index_date=set_index_date,
)
ax = df_cum_transactions.plot(ax=ax, title=title, **kwargs)
if set_index_date:
x_vline = df_cum_transactions.index[int(t_cal)]
xlabel = "date"
else:
x_vline = t_cal
ax.axvline(x=x_vline, color="r", linestyle="--")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
def plot_incremental_transactions(
model,
transactions,
datetime_col,
customer_id_col,
t,
t_cal,
datetime_format=None,
freq="D",
set_index_date=False,
title="Tracking Daily Transactions",
xlabel="day",
ylabel="Transactions",
ax=None,
**kwargs
):
"""
Plot a figure of the predicted and actual incremental transactions of users.
Parameters
----------
model: lifetimes model
A fitted lifetimes model
transactions: pandas DataFrame
DataFrame containing the transactions history of the customer_id
datetime_col: str
The column in transactions that denotes the datetime the purchase was made.
customer_id_col: str
The column in transactions that denotes the customer_id
t: float
The number of time units since the begining of
data for which we want to calculate cumulative transactions
t_cal: float
A marker used to indicate where the vertical line for plotting should be.
datetime_format: str, optional
A string that represents the timestamp format. Useful if Pandas
can't understand the provided format.
freq: str, optional
Default 'D' for days, 'W' for weeks, 'M' for months... etc.
Full list here:
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
set_index_date: bool, optional
When True set date as Pandas DataFrame index, default False - number of time units
title: str, optional
Figure title
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
ax: matplotlib.AxesSubplot, optional
Using user axes
kwargs
Passed into the pandas.DataFrame.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
if ax is None:
ax = plt.subplot(111)
df_cum_transactions = expected_cumulative_transactions(
model,
transactions,
datetime_col,
customer_id_col,
t,
datetime_format=datetime_format,
freq=freq,
set_index_date=set_index_date,
)
# get incremental from cumulative transactions
df_cum_transactions = df_cum_transactions.apply(lambda x: x - x.shift(1))
ax = df_cum_transactions.plot(ax=ax, title=title, **kwargs)
if set_index_date:
x_vline = df_cum_transactions.index[int(t_cal)]
xlabel = "date"
else:
x_vline = t_cal
ax.axvline(x=x_vline, color="r", linestyle="--")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
def plot_transaction_rate_heterogeneity(
model,
suptitle="Heterogeneity in Transaction Rate",
xlabel="Transaction Rate",
ylabel="Density",
suptitle_fontsize=14,
**kwargs
):
"""
Plot the estimated gamma distribution of lambda (customers' propensities to purchase).
Parameters
----------
model: lifetimes model
A fitted lifetimes model, for now only for BG/NBD
suptitle: str, optional
Figure suptitle
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
kwargs
Passed into the matplotlib.pyplot.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
r, alpha = model._unload_params("r", "alpha")
rate_mean = r / alpha
rate_var = r / alpha ** 2
rv = stats.gamma(r, scale=1 / alpha)
lim = rv.ppf(0.99)
x = np.linspace(0, lim, 100)
fig, ax = plt.subplots(1)
fig.suptitle("Heterogeneity in Transaction Rate", fontsize=suptitle_fontsize, fontweight="bold")
ax.set_title("mean: {:.3f}, var: {:.3f}".format(rate_mean, rate_var))
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.plot(x, rv.pdf(x), **kwargs)
return ax
def plot_dropout_rate_heterogeneity(
model,
suptitle="Heterogeneity in Dropout Probability",
xlabel="Dropout Probability p",
ylabel="Density",
suptitle_fontsize=14,
**kwargs
):
"""
Plot the estimated beta distribution of p.
p - (customers' probability of dropping out immediately after a transaction).
Parameters
----------
model: lifetimes model
A fitted lifetimes model, for now only for BG/NBD
suptitle: str, optional
Figure suptitle
xlabel: str, optional
Figure xlabel
ylabel: str, optional
Figure ylabel
kwargs
Passed into the matplotlib.pyplot.plot command.
Returns
-------
axes: matplotlib.AxesSubplot
"""
from matplotlib import pyplot as plt
a, b = model._unload_params("a", "b")
beta_mean = a / (a + b)
beta_var = a * b / ((a + b) ** 2) / (a + b + 1)
rv = stats.beta(a, b)
lim = rv.ppf(0.99)
x = np.linspace(0, lim, 100)
fig, ax = plt.subplots(1)
fig.suptitle(suptitle, fontsize=suptitle_fontsize, fontweight="bold")
ax.set_title("mean: {:.3f}, var: {:.3f}".format(beta_mean, beta_var))
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.plot(x, rv.pdf(x), **kwargs)
return ax
def forceAspect(ax, aspect=1):
im = ax.get_images()
extent = im[0].get_extent()
ax.set_aspect(abs((extent[1] - extent[0]) / (extent[3] - extent[2])) / aspect)