Skip to content

Bihaqo/exp-machines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This is an implementation of Exponential Machines from the paper "Tensor Train polynomial models via Riemannian optimization" [1605.03795].

The main idea is to use a full exponentially-large polynomial model with all interactions of every order. To deal with exponential complexity we represent and learn the tensor of parameters in the Tensor Train (TT) format.

Dependencies

Usage

The interface is the same as of Scikit-learn models. To train a model with logistic loss, TT-rank equal 4 using the Riemannian solver for 10 iteration use the following code:

model = TTRegression('all-subsets', 'logistic', rank=4, solver='riemannian-sgd', max_iter=10, verbose=2)
model.fit(X_train, y_train)

Experiments from the paper

The code to reproduce the experiments is in the experiments folder, one Jupyter Notebook per each experiment.

About

Exponential Machines implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published