Skip to content

Instantly share code, notes, and snippets.

@lancejpollard
Created April 20, 2022 14:49
Show Gist options
  • Save lancejpollard/9e07227091e6331b2ea507a5c1e6233d to your computer and use it in GitHub Desktop.
Save lancejpollard/9e07227091e6331b2ea507a5c1e6233d to your computer and use it in GitHub Desktop.
// from https://www.klittlepage.com/2013/12/21/twelve-days-2013-de-bruijn-sequences/
import java.util.Random;
/**
* @author Kelly Littlepage
*/
public class DeBruijn {
/***
* Generate a De Bruijn Sequence using the recursive FKM algorithm as given
* in http://www.1stworks.com/ref/RuskeyCombGen.pdf .
*
* @param k The number of (integer) symbols in the alphabet.
* @param n The length of the words in the sequence.
*
* @return A De Bruijn sequence B(k, n).
*/
private static String generateDeBruijnSequence(int k, int n) {
final int[] a = new int[k * n];
final StringBuilder sb = new StringBuilder();
generateDeBruijnSequence(a, sb, 1, 1, k, n);
return sb.toString();
}
private static void generateDeBruijnSequence(int[] a,
StringBuilder sequence,
int t,
int p,
int k,
int n) {
if(t > n) {
if(0 == n % p) {
for(int j = 1; j <= p; ++j) {
sequence.append(a[j]);
}
}
} else {
a[t] = a[t - p];
generateDeBruijnSequence(a, sequence, t + 1, p, k, n);
for(int j = a[t - p] + 1; j < k; ++j) {
a[t] = j;
generateDeBruijnSequence(a, sequence, t + 1, t, k, n);
}
}
}
/***
* Build the minimal perfect hash table required by the De Bruijn ffs
* procedure. See http://supertech.csail.mit.edu/papers/debruijn.pdf.
*
* @param deBruijnConstant The De Bruijn number to use, as produced by
* {@link DeBruijn#generateDeBruijnSequence(int, int)} with k = 2.
* @param n The length of the integer word that will be used for lookup,
* in bits. N must be a positive power of two.
*
* @return A minimal perfect hash table for use with the
* {@link DeBruijn#ffs(int, int[], int)} function.
*/
private static int[] buildDeBruijnHashTable(int deBruijnConstant, int n) {
if(!isPositivePowerOfTwo(n)) {
throw new IllegalArgumentException("n must be a positive power " +
"of two.");
}
// We know that n is a power of two so this (meta circular) hack will
// give us lg(n).
final int lgn = Integer.numberOfTrailingZeros(n);
final int[] table = new int[n];
for(int i = 0; i < n; ++i) {
table[(deBruijnConstant << i) >>> (n - lgn)] = i;
}
return table;
}
/***
* Tests that an integer is a positive, non-zero power of two.
*
* @param x The integer to test.
* @return <code>true</code> if the integer is a power of two, and
* <code>false otherwise</code>.
*/
private static boolean isPositivePowerOfTwo(int x) {
return x > 0 && ((x & -x) == x);
}
/***
* A find-first-set bit procedure based off of De Bruijn minimal perfect
* hashing. See http://supertech.csail.mit.edu/papers/debruijn.pdf.
*
* @param deBruijnConstant The De Bruijn constant used in the construction
* of the deBruijnHashTable.
* @param deBruijnHashTable A hash 32-bit integer hash table, as produced by
* a call to {@link DeBruijn#buildDeBruijnHashTable(int, int)} with n = 32.
* @param x The number for which the first set bit is desired.
*
* @return <code>32</code> if x == 0, and the position (in bits) of the
* first (rightmost) set bit in the integer x. This function chooses to
* return 32 in the event that no bit is set so that behavior is consistent
* with {@link Integer.numberOfTrailingZeros()}.
*/
private static int ffs(int deBruijnConstant,
int[] deBruijnHashTable, int x) {
if(x == 0) {
return 32;
}
x &= -x;
x *= deBruijnConstant;
x >>>= 27;
return deBruijnHashTable[x];
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment