|
import random |
|
from chain import FusionChain, FusionChainResult, MinimalChainable |
|
|
|
|
|
def test_chainable_solo(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return f"Solo response: {prompt}" |
|
|
|
# Test context and single chain |
|
context = {"variable": "Test"} |
|
chains = ["Single prompt: {{variable}}"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 1 |
|
assert result[0] == "Solo response: Single prompt: Test" |
|
|
|
|
|
def test_chainable_run(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return f"Response to: {prompt}" |
|
|
|
# Test context and chains |
|
context = {"var1": "Hello", "var2": "World"} |
|
chains = ["First prompt: {{var1}}", "Second prompt: {{var2}} and {{var1}}"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 2 |
|
assert result[0] == "Response to: First prompt: Hello" |
|
assert result[1] == "Response to: Second prompt: World and Hello" |
|
|
|
|
|
def test_chainable_with_output(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return f"Response to: {prompt}" |
|
|
|
# Test context and chains |
|
context = {"var1": "Hello", "var2": "World"} |
|
chains = ["First prompt: {{var1}}", "Second prompt: {{var2}} and {{output[-1]}}"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 2 |
|
assert result[0] == "Response to: First prompt: Hello" |
|
assert ( |
|
result[1] |
|
== "Response to: Second prompt: World and Response to: First prompt: Hello" |
|
) |
|
|
|
|
|
def test_chainable_json_output(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
if "Output JSON" in prompt: |
|
return '{"key": "value"}' |
|
return prompt |
|
|
|
# Test context and chains |
|
context = {"test": "JSON"} |
|
chains = ["Output JSON: {{test}}", "Reference JSON: {{output[-1].key}}"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 2 |
|
assert isinstance(result[0], dict) |
|
print("result", result) |
|
assert result[0] == {"key": "value"} |
|
assert result[1] == "Reference JSON: value" # Remove quotes around "value" |
|
|
|
|
|
def test_chainable_reference_entire_json_output(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
if "Output JSON" in prompt: |
|
return '{"key": "value"}' |
|
return prompt |
|
|
|
context = {"test": "JSON"} |
|
chains = ["Output JSON: {{test}}", "Reference JSON: {{output[-1]}}"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
assert len(result) == 2 |
|
assert isinstance(result[0], dict) |
|
assert result[0] == {"key": "value"} |
|
assert result[1] == 'Reference JSON: {"key": "value"}' |
|
|
|
|
|
def test_chainable_reference_long_output_value(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return prompt |
|
|
|
context = {"test": "JSON"} |
|
chains = [ |
|
"Output JSON: {{test}}", |
|
"1 Reference JSON: {{output[-1]}}", |
|
"2 Reference JSON: {{output[-2]}}", |
|
"3 Reference JSON: {{output[-1]}}", |
|
] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
assert len(result) == 4 |
|
assert result[0] == "Output JSON: JSON" |
|
assert result[1] == "1 Reference JSON: Output JSON: JSON" |
|
assert result[2] == "2 Reference JSON: Output JSON: JSON" |
|
assert result[3] == "3 Reference JSON: 2 Reference JSON: Output JSON: JSON" |
|
|
|
|
|
def test_chainable_empty_context(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return prompt |
|
|
|
# Test with empty context |
|
context = {} |
|
chains = ["Simple prompt"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 1 |
|
assert result[0] == "Simple prompt" |
|
|
|
|
|
def test_chainable_json_output_with_markdown(): |
|
# Mock model and callable function |
|
class MockModel: |
|
pass |
|
|
|
def mock_callable_prompt(model, prompt): |
|
return """ |
|
Here's a JSON response wrapped in markdown: |
|
```json |
|
{ |
|
"key": "value", |
|
"number": 42, |
|
"nested": { |
|
"inner": "content" |
|
} |
|
} |
|
``` |
|
""" |
|
|
|
context = {} |
|
chains = ["Test JSON parsing"] |
|
|
|
# Run the Chainable |
|
result, _ = MinimalChainable.run(context, MockModel(), mock_callable_prompt, chains) |
|
|
|
# Assert the results |
|
assert len(result) == 1 |
|
assert isinstance(result[0], dict) |
|
assert result[0] == {"key": "value", "number": 42, "nested": {"inner": "content"}} |
|
|
|
|
|
def test_fusion_chain_run(): |
|
# Mock models |
|
class MockModel: |
|
def __init__(self, name): |
|
self.name = name |
|
|
|
# Mock callable function |
|
def mock_callable_prompt(model, prompt): |
|
return f"{model.name} response: {prompt}" |
|
|
|
# Mock evaluator function (random scores between 0 and 1) |
|
def mock_evaluator(outputs): |
|
top_response = random.choice(outputs) |
|
scores = [random.random() for _ in outputs] |
|
return top_response, scores |
|
|
|
# Test context and chains |
|
context = {"var1": "Hello", "var2": "World"} |
|
chains = ["First prompt: {{var1}}", "Second prompt: {{var2}} and {{output[-1]}}"] |
|
|
|
# Create mock models |
|
models = [MockModel(f"Model{i}") for i in range(3)] |
|
|
|
# Mock get_model_name function |
|
def mock_get_model_name(model): |
|
return model.name |
|
|
|
# Run the FusionChain |
|
result = FusionChain.run( |
|
context=context, |
|
models=models, |
|
callable=mock_callable_prompt, |
|
prompts=chains, |
|
evaluator=mock_evaluator, |
|
get_model_name=mock_get_model_name, |
|
) |
|
|
|
# Assert the results |
|
assert isinstance(result, FusionChainResult) |
|
assert len(result.all_prompt_responses) == 3 |
|
assert len(result.all_context_filled_prompts) == 3 |
|
assert len(result.performance_scores) == 3 |
|
assert len(result.model_names) == 3 |
|
|
|
for i, (outputs, context_filled_prompts) in enumerate( |
|
zip(result.all_prompt_responses, result.all_context_filled_prompts) |
|
): |
|
assert len(outputs) == 2 |
|
assert len(context_filled_prompts) == 2 |
|
|
|
assert outputs[0] == f"Model{i} response: First prompt: Hello" |
|
assert ( |
|
outputs[1] |
|
== f"Model{i} response: Second prompt: World and Model{i} response: First prompt: Hello" |
|
) |
|
|
|
assert context_filled_prompts[0] == "First prompt: Hello" |
|
assert ( |
|
context_filled_prompts[1] |
|
== f"Second prompt: World and Model{i} response: First prompt: Hello" |
|
) |
|
|
|
# Check that performance scores are between 0 and 1 |
|
assert all(0 <= score <= 1 for score in result.performance_scores) |
|
|
|
# Check that the number of unique scores is likely more than 1 (random function) |
|
assert ( |
|
len(set(result.performance_scores)) > 1 |
|
), "All performance scores are the same, which is unlikely with a random evaluator" |
|
|
|
# Check that top_response is present and is either a string or a dict |
|
assert isinstance(result.top_response, (str, dict)) |
|
|
|
# Print the output of FusionChain.run |
|
print("All outputs:") |
|
for i, outputs in enumerate(result.all_prompt_responses): |
|
print(f"Model {i}:") |
|
for j, output in enumerate(outputs): |
|
print(f" Chain {j}: {output}") |
|
|
|
print("\nAll context filled prompts:") |
|
for i, prompts in enumerate(result.all_context_filled_prompts): |
|
print(f"Model {i}:") |
|
for j, prompt in enumerate(prompts): |
|
print(f" Chain {j}: {prompt}") |
|
|
|
print("\nPerformance scores:") |
|
for i, score in enumerate(result.performance_scores): |
|
print(f"Model {i}: {score}") |
|
|
|
print("\nTop response:") |
|
print(result.top_response) |
|
|
|
print("result.model_dump: ", result.model_dump()) |
|
print("result.model_dump_json: ", result.model_dump_json()) |
Thank you for this.
I had to add python-dotenv to my requirements.txt for this to work (running cursor.sh, using poetry rather than python venv.