-
-
Save datlife/abfe263803691a8864b7a2d4f87c4ab8 to your computer and use it in GitHub Desktop.
"""An example of how to use tf.Dataset in Keras Model""" | |
import tensorflow as tf # only work from tensorflow==1.9.0-rc1 and after | |
_EPOCHS = 5 | |
_NUM_CLASSES = 10 | |
_BATCH_SIZE = 128 | |
def training_pipeline(): | |
# ############# | |
# Load Dataset | |
# ############# | |
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() | |
training_set = tfdata_generator(x_train, y_train, is_training=True, batch_size=_BATCH_SIZE) | |
testing_set = tfdata_generator(x_test, y_test, is_training=False, batch_size=_BATCH_SIZE) | |
# ############# | |
# Train Model | |
# ############# | |
model = keras_model() # your keras model here | |
model.compile('adam', 'categorical_crossentropy', metrics=['acc']) | |
model.fit( | |
training_set.make_one_shot_iterator(), | |
steps_per_epoch=len(x_train) // _BATCH_SIZE, | |
epochs=_EPOCHS, | |
validation_data=testing_set.make_one_shot_iterator(), | |
validation_steps=len(x_test) // _BATCH_SIZE, | |
verbose = 1) | |
def tfdata_generator(images, labels, is_training, batch_size=128): | |
'''Construct a data generator using tf.Dataset''' | |
def preprocess_fn(image, label): | |
'''A transformation function to preprocess raw data | |
into trainable input. ''' | |
x = tf.reshape(tf.cast(image, tf.float32), (28, 28, 1)) | |
y = tf.one_hot(tf.cast(label, tf.uint8), _NUM_CLASSES) | |
return x, y | |
dataset = tf.data.Dataset.from_tensor_slices((images, labels)) | |
if is_training: | |
dataset = dataset.shuffle(1000) # depends on sample size | |
# Transform and batch data at the same time | |
dataset = dataset.apply(tf.contrib.data.map_and_batch( | |
preprocess_fn, batch_size, | |
num_parallel_batches=4, # cpu cores | |
drop_remainder=True if is_training else False)) | |
dataset = dataset.repeat() | |
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE) | |
return dataset | |
def keras_model(): | |
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, Input | |
inputs = Input(shape=(28, 28, 1)) | |
x = Conv2D(32, (3, 3),activation='relu', padding='valid')(inputs) | |
x = MaxPool2D(pool_size=(2, 2))(x) | |
x = Conv2D(64, (3, 3), activation='relu')(x) | |
x = MaxPool2D(pool_size=(2, 2))(x) | |
x = Flatten()(x) | |
x = Dense(512, activation='relu')(x) | |
x = Dropout(0.5)(x) | |
outputs = Dense(_NUM_CLASSES, activation='softmax')(x) | |
return tf.keras.Model(inputs, outputs) | |
if __name__ == '__main__': | |
training_pipeline() |
Are you using tensorflow > 1.9, @pbamotra?
@datlife , I have the same issue. I use tensorflow==1.8.0
@nickyua , this is not supported until version 1.9. You can refer to this page:https://github.com/tensorflow/tensorflow/releases
@nickyua , I have the same error ' AttributeError: 'Iterator' object has no attribute 'ndim' and I used tesnsorflow 1.9. but I am using Keras
as standalone tool with backend of tensor flow. So what do you think guys the problem is?
Same issue here: AttributeError: 'Iterator' object has no attribute 'ndim'
Hy guys, please make sure your current tensorflow support tf.Data API for Keras. What is your current tf.__version__
? It must be greater than 1.9.0.
Great snippet. Very precise and complete. Thank you.
What if we do not have x_train
in memory but use tf.dataset
to read directly a CSV file, how to define steps_per_epoch
in model.fit
?
steps_per_epoch=len(x_train) // _BATCH_SIZE,
@datlife, I'm on 1.10.0. It worked, but the fit()
function doc still show fit(x, y, ...)
, is this handled somewhere else?
how
"training_set.make_one_shot_iterator(),"
in
model.fit( training_set.make_one_shot_iterator(), steps_per_epoch=len(x_train) // _BATCH_SIZE, epochs=_EPOCHS, validation_data=testing_set.make_one_shot_iterator(), validation_steps=len(x_test) // _BATCH_SIZE, verbose = 1)
would change if our model had two inputs and one output.
I'am 1.12.0 still have this problem
I'm using make_one_shot_iterator()
with model.fit_generator()
, tf.__version__== '1.12.0'
, still got the following error:
TypeError: 'Iterator' object is not an iterator
It works for me at tf version 1.12
Thank you so much.
Same error as @was84san but I'm on:
tf.version
'1.12.0'
keras.version
'2.2.4'
Did anyone manage to solve this error?
Update: The issue seems to come from using keras as a module instead of the tensorflow.keras implementation. Using tensorflow.keras.Model works as expected.
I have userd tensorflow.keras.Model, but also meet the error ,which is as follow:
Epoch 1/2
Traceback (most recent call last):
File "train.py", line 176, in
verbose=2)
File "/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 2177, in fit_generator
initial_epoch=initial_epoch)
File "/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_generator.py", line 147, in fit_generator
generator_output = next(output_generator)
File "/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/utils/data_utils.py", line 831, in get
six.reraise(value.class, value, value.traceback)
File "/opt/conda/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
TypeError: 'Iterator' object is not an iterator
My code is as follow:
ain the model
net_final.fit_generator(dataset.make_one_shot_iterator(), #train_datagen,
steps_per_epoch = 2, #train_batches.samples // BATCH_SIZE,
validation_data = valid_batches,
validation_steps = valid_batches.samples // BATCH_SIZE,
epochs = 2,
workers=16,
max_queue_size=44,
use_multiprocessing=True,
callbacks=[cpt],
verbose=2)
And my versions of keras and tensorflow are 2.1.6 and 1.12.0
from ._conv import register_converters as _register_converters
print (tensorflow.version)
1.12.0
import keras
Using TensorFlow backend.
print (keras.version)
2.1.6
Hello, sorry if this is not directly related to this code sample. This is the most related post that I could find.
I would appreciate any help / reference.
I am trying to make tf.data.dataset work with tf.keras using the tf.estimator.
I get an error dimension when I am pushing the train_fn batch to the keras model (after converted it to estimator) . The code looks like that:
`def train_input_fn(batch_size=1):
"""An input function for training"""
print("train_input_fn: start function")
train_dataset = tf.data.experimental.make_csv_dataset(CSV_PATH_TRAIN, batch_size=batch_size,label_name='label',
select_columns=["sample","label"])
print('train_input_fn: finished make_csv_dataset')
train_dataset = train_dataset.map(parse_features_vector)
print("train_input_fn: finished the map with pars_features_vector")
train_dataset = train_dataset.repeat().batch(batch_size)
print("train_input_fn: finished batch size. train_dataset is %s ", train_dataset)
return train_dataset
IMG_SHAPE = (160,160,3)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top = False,
weights = 'imagenet')
base_model.trainable = False
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),
loss='binary_crossentropy',
metrics=['accuracy'])
estimator = tf.keras.estimator.model_to_estimator(keras_model = model, model_dir = './date')
#train_input_fn read a CSV of images, resize them and returns dataset batch
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=20)
#eval_input_fn read a CSV of images, resize them and returns dataset batch of one sample
eval_spec = tf.estimator.EvalSpec(eval_input_fn)
tf.estimator.train_and_evaluate(estimator, train_spec=train_spec, eval_spec=eval_spec)`
the log is:
train_input_fn: finished batch size. train_dataset is %s <BatchDataset shapes: ({mobilenetv2_1.00_160_input: (None, 1, 160, 160, 3)}, (None, 1)), types: ({mobilenetv2_1.00_160_input: tf.float32}, tf.int32)>
and the error is:
ValueError: Input 0 of layer Conv1_pad is incompatible with the layer: expected ndim=4, found ndim=5. Full shape received: [None, 1, 160, 160, 3]
Many thanks for any help,
eilalan
I noticed the delayed training issue and noticed a big speed improvement in tensorflow-gpu-1.13
on my machine when I run tf.enable_eager_execution()
before running the code.
I found tf1.14 still has this issue.
Is there a solution, anyone find it?
replace tf.contrib.data
-> tf.data.experimental
remove .make_one_shot_iterator
and this runs
tf.__version__
'2.2.0'
Python 3.8.3
Tried reproducing it using https://hub.docker.com/r/tensorflow/tensorflow/
latest tensorflow 1.9 docker image.