Aller au contenu

Forme de Killing

Un article de Wikipédia, l'encyclopédie libre.

Dans la théorie des algèbres de Lie, la forme de Killing est une forme bilinéaire symétrique naturellement associée à toute algèbre de Lie. Elle reflète un certain nombre de propriétés des algèbres de Lie (semi-simplicité, résolubilité…).

Définition

[modifier | modifier le code]

Soit g une K-algèbre de Lie, où K désigne un corps (commutatif). La représentation adjointe définit pour tout vecteur x de g un endomorphisme K-linéaire ad(x) du K-espace vectoriel g :

Si g est de dimension finie, il existe une forme bilinéaire symétrique B définie par :

où Tr désigne l'opérateur trace. Cette forme est appelée forme de Killing de g.

La forme de Killing est l'unique forme bilinéaire symétrique sur g invariante sous l'action des automorphismes de la K-algèbre de Lie g et vérifiant l'identité remarquable :

Curieusement, la forme de Killing a été définie par Élie Cartan, tandis que la matrice de Cartan a été définie par Wilhelm Killing.

Notes et références

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]