Ir al contenido

Intersección de conjuntos

De Wikipedia, la enciclopedia libre
La intersección de A y B es otro conjunto A B que contiene sólo los elementos que pertenecen tanto a A como a B.

En teoría de conjuntos, la intersección de dos (o más) conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares.

En otras palabras: Cómo, por ejemplo, si A = { a, b, c, d, e, f} y B = { a, e, i, o, u}, entonces la intersección de dichos conjuntos estará formada por todos los elementos que estén a la vez en los dos conjuntos, esto es: AB = { a, e}

La intersección de conjuntos se denota por el símbolo por lo que D = P C.

Definición

[editar]
La intersección de dos superficies oblicuas.
La intersección de dos superficies perpendiculares.
La intersección de dos superficies perpendiculares.
Intersección de 3 conjuntos (diagrama de Venn).
Intersección de dos conjuntos A y B.

Dados dos conjuntos A y B, su intersección es otro subconjunto cuyos elementos, necesariamente, pertenecen a ambos conjunto. A = { π, c, 8, γ, 5, P} y B = {ω, c, 0, Δ, 5, R}. Entonces la intersección es A B = {5, c}.

  • Sean los conjuntos de números naturales C = {n: n es una potencia de 2} y D = {n: n es un cubo}. Su intersección es C D = {n: n es una potencia de 2 y un cubo} = {n: n es una potencia de 2 cuyo exponente es múltiplo de 3} = {8, 64, 512, ...}.
  • Sean los conjuntos de números pares e impares. Su intersección es el conjunto vacío , ya que no existe ningún número natural que sea par e impar a la vez.

Cuando la intersección de dos conjuntos es vacía, se dice que son disjuntos:

Dos conjuntos A y B se dicen disjuntos si su intersección es el conjunto vacío:

Generalizaciones

[editar]

La intersección de un número finito de conjuntos, superior a dos, se define teniendo en cuenta que, debido a la propiedad asociativa (más abajo), el orden en el que se intersequen los conjuntos es irrelevante:

La definición más general en teoría de conjuntos se refiere a una familia de conjuntos, un conjunto cuyos elementos son conjuntos a su vez:

Sea M una familia de conjuntos. Su intersección M se define como:

De este modo, la intersección de un número finito de conjuntos es sólo un caso particular de esta definición general:

A B = M, donde M = {A, B}
A1 ... An = M, donde M = {A1, ..., An}

La intersección general de conjuntos se denota de diversas maneras:v

donde esta última se aplica en el caso de que utilicemos un conjunto índice, definiendo M como {Ai: i I}.

Propiedades

[editar]

De la definición de intersección puede deducirse directamente:

  • Idempotencia. La intersección de un conjunto A consigo mismo es el propio A :
  • La intersección de A y B es un subconjunto de ambos:
  • La intersección de un conjunto B con un conjunto A que lo contenga, deja a B inalterado:

La intersección de conjuntos poseen también propiedades similares a las operaciones con números:

  • Propiedad asociativa. La intersección de los conjuntos A y B C es igual a la intersección de los conjuntos A B y C :
  • Propiedad conmutativa. La intersección de los conjuntos A y B es igual a la intersección de los conjuntos B y A :

Todas estas propiedades se deducen de propiedades análogas para la conjunción lógica.

En relación con la operación de unión existen unas leyes distributivas:

Propiedad distributiva

  • A (B C) = (A B) (A C), y por tanto:
    • A (A B) = A
  • A (B C) = (A B) (A C), y por tanto:
    • A (A B) = A
  • Se cumple que ∅ ⊂ A∩B∩C ⊂ A∩B ⊂ A ⊂ A∪B ⊂ A∪B∪C ⊂ Ω donde Ω es el conjunto universal.[1]

Teoría axiomática

[editar]

En las teorías axiomáticas de conjuntos usuales, como ZFC o NBG, la existencia de la intersección de una familia de conjuntos no se postula de manera independiente, sino que se demuestra como consecuencia del esquema axiomático de reemplazo.

Véase también

[editar]

Referencias

[editar]
  1. Rojo. Álgebra I

Literatura del tema

[editar]
  • Dorronsoro, José; Hernández, Eugenio (1996). Números, grupos y anillos. Addison-Wesley/Universidad Autónoma de Madrid. ISBN 84-7829-009-5. 
  • Lipschutz, Seymour (1991). Teoría de conjuntos y temas afines. McGraw-Hill. ISBN 968-422-926-7. 
  • Yu. M. Korshunov. Fundamentos matemáticos de la cibernética. Editorial Mir, Moscú s/f.