Jump to content

File:Filter collection mechanisms.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 795 × 930 pixels, file size: 2 KB)

Summary

Description
English: Figure 5. Four primary filter collection mechanisms:
  • Diffusion is the result of the random (Brownian) motion of a particle. The particle may contact a fiber on its path through the filter.
  • Interception occurs when the radius of a particle moving along an air streamline is greater than the distance from the streamline to the surface, thus causing the particle surface to contact the surface of the fiber. The particle adheres to the fiber due to intermolecular forces.
  • Inertial impaction occurs when an air stream bends around a fiber, and a particle traveling in that air stream continues in a straight path due to particle inertia. The particle collides with the fiber and adheres to it due to intermolecular forces.
  • Electrostatic attraction occurs when the particle and the fiber are oppositely charged. As the force of this attraction is governed by the charge-to-mass ratio of the particle, it becomes more effective as particle size decreases.
Русский: Четыре механизма улавливания пылинок в волокнистом фильтре.
  • Диффузия - в результате хаотического броуновского движения частицы. Частица в результате может прийти в контакт с волокном фильтра.
  • Прилипание или зацепление происходит когда радиус частицы, движущейся вдоль линии тока превышает расстояние от линии тока до поверхности что приводит к контакту поверхности частицы с поверхностью волокна. Частица прилипает к волокну за счет
  • Столкновение происходит, когда воздушный поток изгибается вокруг волокна, и частица, движущаяся в этом воздушном потоке, продолжает двигаться по прямому пути из-за инерции. Частица сталкивается с волокном и прилипает к нему за счет сил Ван-дер-Ваальса.
  • Электростатическое прилипание происходит если частица и волокно заряжены противоположно. Поскольку удельная сила этого притяжения определяется отношением заряда к массе частицы, оно становится более эффективным для малых частиц.
Date
Source Own work using: Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes (in en-us). U.S. National Institute for Occupational Safety and Health pp. 14–15 (November 2013). Retrieved on 2017-03-05.
Author Andrew Jarvis
Other versions
SVG development
InfoField
 
The SVG code is valid.
 
This diagram was created with a text editor.
 
 This diagram uses embedded text that can be easily translated using a text editor.

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

17 June 2019

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current22:19, 17 June 2019Thumbnail for version as of 22:19, 17 June 2019795 × 930 (2 KB)JarvisaUser created page with UploadWizard

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata