Skip to main content

Advertisement

Log in

18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We have previously reported that 18F-FB-E[c(RGDyK)]2 (18F-FRGD2) allows quantitative PET imaging of integrin αvβ3 expression. However, the potential clinical translation was hampered by the relatively low radiochemical yield. The goal of this study was to improve the radiolabeling yield, without compromising the tumor targeting efficiency and in vivo kinetics, by incorporating a hydrophilic bifunctional mini-PEG spacer.

Methods

18F-FB-mini-PEG-E[c(RGDyK)]2 (18F-FPRGD2) was synthesized by coupling N-succinimidyl-4-18F-fluorobenzoate (18F-SFB) with NH2-mini-PEG-E[c(RGDyK)]2 (denoted as PRGD2). In vitro receptor binding affinity, metabolic stability, and integrin αvβ3 specificity of the new tracer 18F-FPRGD2 were assessed. The diagnostic value of 18F-FPRGD2 was evaluated in subcutaneous U87MG glioblastoma xenografted mice and in c-neu transgenic mice by quantitative microPET imaging studies.

Results

The decay-corrected radiochemical yield based on 18F-SFB was more than 60% with radiochemical purity of >99%. 18F-FPRGD2 had high receptor binding affinity, metabolic stability, and integrin αvβ3-specific tumor uptake in the U87MG glioma xenograft model comparable to those of 18F-FRGD2. The kidney uptake was appreciably lower for 18F-FPRGD2 compared with 18F-FRGD2 [2.0 ± 0.2%ID/g for 18F-FPRGD2 vs 3.0 ± 0.2%ID/g for 18F-FRGD2 at 1 h post injection (p.i.)]. The uptake in all the other organs except the urinary bladder was at background level. 18F-FPRGD2 also exhibited excellent tumor uptake in c-neu oncomice (3.6 ± 0.1%ID/g at 30 min p.i.).

Conclusion

Incorporation of a mini-PEG spacer significantly improved the overall radiolabeling yield of 18F-FPRGD2. 18F-FPRGD2 also had reduced renal uptake and similar tumor targeting efficacy as compared with 18F-FRGD2. Further testing and clinical translation of 18F-FPRGD2 are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–87.

    Article  PubMed  CAS  Google Scholar 

  2. Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anti-Cancer Agents Med Chem 2006;6:407–28.

    CAS  Google Scholar 

  3. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science 1994;264:569–71.

    Article  PubMed  CAS  Google Scholar 

  4. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91–100.

    Article  PubMed  Google Scholar 

  5. Haubner R, Wester H-J, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.

    PubMed  CAS  Google Scholar 

  6. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2005;2:e70.

    Article  PubMed  CAS  Google Scholar 

  7. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–51.

    PubMed  CAS  Google Scholar 

  8. Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, et al. Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 2005;7:271–9.

    Article  PubMed  CAS  Google Scholar 

  9. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Xiong Z, Wu X, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 2006;47:113–21.

    PubMed  CAS  Google Scholar 

  11. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. MicroPET imaging of glioma αv-integrin expression using 64Cu-labeled tetrameric RGD eptide. J Nucl Med 2005;46:1707–18.

    PubMed  CAS  Google Scholar 

  12. Cai W, Gambhir SS, Chen X. Multimodality tumor imaging targeting integrin αvβ3. Biotechniques 2005;39:S6–17.

    Article  Google Scholar 

  13. Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.

    PubMed  CAS  Google Scholar 

  14. Haubner R. αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 2006;33 Suppl 11:54–63.

    Article  PubMed  CAS  Google Scholar 

  15. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3:472–87.

    Article  PubMed  CAS  Google Scholar 

  16. Ye Y, Bloch S, Xu B, Achilefu S. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 2006;49:2268–75.

    Article  PubMed  CAS  Google Scholar 

  17. Thumshirn G, Hersel U, Goodman SL, Kessler H. Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 2003;9:2717–25.

    Article  PubMed  CAS  Google Scholar 

  18. Watson N, Duncan G, Annan WS, van der Walle CF. A tetravalent RGD ligand for integrin-mediated cell adhesion. J Pharm Pharmacol 2006;58:959–66.

    Article  PubMed  CAS  Google Scholar 

  19. Wester HJ, Kessler H. Molecular targeting with peptides or peptide-polymer conjugates: just a question of size? J Nucl Med 2005;46:1940–5.

    PubMed  CAS  Google Scholar 

  20. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003;2:214–21.

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Park R, Hou Y, Khankaldyyan V, Gonzales-Gomez I, Tohme M, et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 2004;31:1081–9.

    Article  PubMed  CAS  Google Scholar 

  22. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, et al. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 2004;45:1776–83.

    PubMed  CAS  Google Scholar 

  23. Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti–carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.

    PubMed  CAS  Google Scholar 

  24. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.

    PubMed  CAS  Google Scholar 

  25. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.

    Article  PubMed  CAS  Google Scholar 

  26. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54:105–15.

    Article  PubMed  CAS  Google Scholar 

  27. Harris TD, Kalogeropoulos S, Nguyen T, Dwyer G, Edwards DS, Liu S, et al. Structure-activity relationships of 111In- and 99mTc-labeled quinolin-4-one peptidomimetics as ligands for the vitronectin receptor: potential tumor imaging agents. Bioconjug Chem 2006;17:1294–313.

    Article  PubMed  CAS  Google Scholar 

  28. Onthank DC, Liu S, Silva PJ, Barrett JA, Harris TD, Robinson SP, et al. 90Y and 111In complexes of a DOTA-conjugated integrin αvβ3 receptor antagonist: different but biologically equivalent. Bioconjug Chem 2004;15:235–41.

    Article  PubMed  CAS  Google Scholar 

  29. Harris TD, Kalogeropoulos S, Nguyen T, Liu S, Bartis J, Ellars C, et al. Design, synthesis, and evaluation of radiolabeled integrin αvβ3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm 2003;18:627–41.

    Article  PubMed  CAS  Google Scholar 

  30. Mousa SA, Mohamed S, Wexler EJ, Kerr JS. Antiangiogenesis and anticancer efficacy of TA138, a novel αvβ3 antagonist. Anticancer Res 2005;25:197–206.

    PubMed  CAS  Google Scholar 

  31. Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, et al. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 2004;31:179–89.

    Article  PubMed  CAS  Google Scholar 

  32. Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 2004;126:5730–9.

    Article  PubMed  CAS  Google Scholar 

  33. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 2004;45:892–902.

    PubMed  CAS  Google Scholar 

  34. Schottelius M, Poethko T, Herz M, Reubi JC, Kessler H, Schwaiger M, et al. First 18F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 2004;10:3593–606.

    Article  PubMed  CAS  Google Scholar 

  35. Kilbourn MR, Dence CS, Welch MJ, Mathias CJ. Fluorine-18 labeling of proteins. J Nucl Med 1987;28:462–70.

    PubMed  CAS  Google Scholar 

  36. Wester HJ, Hamacher K, Stoecklin G. A comparative study of n.c.a. fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl Med Biol 1996;23:365–72.

    Article  PubMed  CAS  Google Scholar 

  37. Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods and reagents for conjugate labeling. Bioconjug Chem 1992;3:432–70.

    Article  CAS  Google Scholar 

  38. Marik J, Sutcliffe JL. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett 2006;47:6681–4.

    Article  CAS  Google Scholar 

  39. Lee CC, Sui G, Elizarov A, Shu CJ, Shin YS, Dooley AN, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 2005;310:1793–6.

    Article  PubMed  CAS  Google Scholar 

  40. Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med 2006;47:1434–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R21 EB001785), National Cancer Institute (NCI) (R21 CA102123, P50 CA114747, U54 CA119367, and R24 CA93862), Department of Defense (DOD) (W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, and DAMD17-03-1-0143), and a Benedict Cassen Postdoctoral Fellowship from the Education and Research Foundation of the Society of Nuclear Medicine (to W. Cai). We thank Dr. David W. Dick from the cyclotron facility for 18F-F production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Additional information

Zhanhong Wu and Zi-Bo Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Cell-binding assay of PRGD2, FPRGD2, RGD2, and FRGD2 using U87MG cells (integrin αvβ3-positive human glioblastoma) and 125I-echistatin as the radioligand. IC50 values for PRGD2, FPRGD2, RGD2, and FRGD2 were 70.1 ± 3.5, 40.6 ± 4.6, 26.1 ± 3.2, and 55.1 ± 6.5 nmol/l, respectively. Data points shown are means of triplicate samples (DOC 25 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Li, ZB., Cai, W. et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 34, 1823–1831 (2007). https://doi.org/10.1007/s00259-007-0427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0427-0

Keywords

Navigation