Skip to main content

Multiplicative properties of η-products

  • Conference paper
  • First Online:
Number Theory, Madras 1987

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1395))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Allatt and J.B. Slater, “Congruences on some special modular forms,” J. London Math. Soc. (2) 17 (1978), 380–392.

    Article  MathSciNet  MATH  Google Scholar 

  2. G.E. Andrews, “The fifth and seventh order mock theta functions,” Trans. Amer. Math. Soc. 293 (1986), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  3. G.E. Andrews, “Questions and conjectures in partition theory,” Amer. Math. Monthly 93 (1986), 708–711.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.E. Andrews, F.J. Dyson and D. Hickerson, “Partitions and indefinite quadratic forms,” Invent. Math. 91 (1988), 391–407.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.O.L. Atkin, “Ramanujan congruences for p−k(n),” Canad. J. Math. 20 (1968), 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Cohen, “Sur une fausse forme modulaire lieé à des identités de Ramanujan et Andrews,” Proc. Int. Conf. on Number Theory, Laval Univ., Quebec, 1987.

    Google Scholar 

  7. H. Cohen, “q-identities for Maass waveforms,” Invent. Math. 91 (1988), 409–422.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Deligne and J.-P. Serre, “Formes modulaires de poids 1,” Ann. Sci. Ecole Norm. Sup. 7 (1974), 507–530.

    MathSciNet  MATH  Google Scholar 

  9. G. Ligozat, “Courbes modulaires de genre 1,” Bull. Soc. Math. France, Mém. 43 (1975), 1–80.

    MathSciNet  MATH  Google Scholar 

  10. M. Newman, “Construction and application of a class of modular functions (II),” Proc. London Math. Soc. (3), 9 (1959), 373–387.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Newman, “Modular forms whose coefficients possess multiplicative properties,” Ann. Math. 70 (1959), 478–489.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Newman, “Weighted restricted partitions,” Acta Arith. 5 (1959), 371–379.

    MathSciNet  MATH  Google Scholar 

  13. M. Newman, “Modular forms whose coefficients possess multiplicative properties, II,” Ann. Math. 75 (1962), 242–250.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Newman, “Modular functions revisited,” Springer Lect. Notes in Math. 899 (1981), 396–421.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Ribet, “Galois representations attached to eigenforms with Nebentypus,” Springer Lect. Notes in Math. 601 (1977), 17–52.

    MathSciNet  MATH  Google Scholar 

  16. J.-P. Serre, “Formes modulaires et fonctions zêta p-adiques,” Springer Lect. Notes in Math. 350 (1973), 191–268.

    Article  Google Scholar 

  17. J.-P. Serre, “Modular forms of weight one and Galois representations,” Algebraic Number Fields (edit. A.Fröhlich), Academic Press (1977), 193–268.

    Google Scholar 

  18. J.-P. Serre, “Quelques applications du théorème de densité de Chebotarev,” Publ. Math. I.H.E.S. 54 (1981), 123–201.

    Article  MATH  Google Scholar 

  19. J.-P. Serre, “Sur la lacunarité des puissances de ν,” Glasgow Math. J. 27 (1985), 203–221.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press (1971), 65–89.

    Google Scholar 

  21. H.P.F. Swinnerton-Dyer, “On l-adic representations and congruences for coefficients of modular forms,” Springer Lect. Notes in Math. 350 (1973), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  22. H.P.F. Swinnerton-Dyer, “On l-adic representations and congruences for coefficients of modular forms II,” Springer Lect. Notes in Math. 601 (1977), 63–90.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Krishnaswami Alladi

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Gordon, B., Sinor, D. (1989). Multiplicative properties of η-products. In: Alladi, K. (eds) Number Theory, Madras 1987. Lecture Notes in Mathematics, vol 1395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086404

Download citation

  • DOI: https://doi.org/10.1007/BFb0086404

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51595-1

  • Online ISBN: 978-3-540-46681-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation