Some recurrence relations of poly-Cauchy numbers
-
1992
Downloads
-
3934
Views
Authors
Takao Komatsu
- Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Abstract
Poly-Cauchy numbers \(c_n^{(k)}\) (\(n\ge 0\), \(k\ge 1\)) have explicit expressions in terms of the Stirling numbers of the first kind. When the index is negative, there exists a different expression. However, the sequence \(\{c_n^{(-k)}\}_{n\ge 0}\) seem quite irregular for a fixed integer \(k\ge 2\).
In this paper we establish a certain kind of recurrence relations among the sequence \(\{c_n^{(-k)}\}_{n\ge 0}\), analyzing the structure of poly-Cauchy numbers. We also study those of poly-Cauchy numbers of the second kind, poly-Euler numbers, and poly-Euler numbers of the second kind. Some different proofs are given.
As applications, some leaping relations are shown.
Share and Cite
ISRP Style
Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 12, 829--845
AMA Style
Komatsu Takao, Some recurrence relations of poly-Cauchy numbers. J. Nonlinear Sci. Appl. (2019); 12(12):829--845
Chicago/Turabian Style
Komatsu, Takao. "Some recurrence relations of poly-Cauchy numbers." Journal of Nonlinear Sciences and Applications, 12, no. 12 (2019): 829--845
Keywords
- Poly-Cauchy numbers
- poly-Euler numbers
- recurrence
- leaping relations
- Vandermonde's determinant
MSC
- 11B75
- 11B37
- 11B68
- 11B73
- 05A19
- 11C20
- 15A15
References
-
[1]
T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli numbers and zeta functions. With an appendix by Don Zagier, Springer, Tokyo (2014)
-
[2]
T. Arakawa, M. Kaneko, On Poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., 48 (1999), 159--167
-
[3]
L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht (1974)
-
[4]
C. Elsner, T. Komatsu, On the residue classes of integer sequences satisfying a linear three-term recurrence formula, Linear Algebra Appl., 429 (2008), 933--947
-
[5]
K. Kamano, T. Komatsu, Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory, 3 (2013), 61--87
-
[6]
K. Kamano, T. Komatsu, Some congruence relations of poly-Cauchy numbers, J. Comb. Number Theory, 5 (2014), 145--150
-
[7]
M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, 9 (1997), 221--228
-
[8]
T. Komatsu, Four-term leaping recurrence relations, Linear Multilinear Algebra, 58 (2010), 875--886
-
[9]
T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math., 67 (2013), 143--153
-
[10]
T. Komatsu, Complementary Euler numbers, Period. Math. Hungar., 75 (2017), 302--314
-
[11]
T. Komatsu, On poly-Euler numbers of the second kind, arXiv, 2018 (2018), 16 pages
-
[12]
D. Merlini, R. Sprugnoli, M. C. Verri, The Cauchy numbers, Discrete Math., 306 (2006), 1906--1920
-
[13]
Y. Ohno, Y. Sasaki, On poly-Euler numbers, J. Aust. Math. Soc., 103 (2017), 126--144
-
[14]
Y. Sasaki, Recurrence formulas for poly-Bernoulli numbers and their combinatoric interpretations, Presented at the workshop of Analytic Number Theory and Related Topics (Research Institute for Mathematical Sciences, Kyoto University), 2018 (2018), 11 pages
-
[15]
N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., 65 (2018), 1062--1074