Abstract
In a recent paper, we have introduced new sets of Sheffer and Brenke polynomial sequences based on higher order Bell numbers. In this paper, by using a more compact notation, we show another family of exponential polynomials belonging to the Sheffer class, called, for shortness, Sheffer–Bell polynomials. Furthermore, we introduce a set of logarithmic numbers, which are the counterpart of Bell numbers and their extensions.
References
[1] E. T. Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934), no. 2, 258–277. 10.2307/1968431Search in Google Scholar
[2] E. T. Bell, The iterated exponential integers, Ann. of Math. (2) 39 (1938), no. 3, 539–557. 10.2307/1968633Search in Google Scholar
[3] Y. Ben Cheikh, Some results on quasi-monomiality, Appl. Math. Comput. 141 (2003), no. 1, 63–76. 10.1016/S0096-3003(02)00321-1Search in Google Scholar
[4] A. Bernardini, P. Natalini and P. E. Ricci, Multidimensional Bell polynomials of higher order, Comput. Math. Appl. 50 (2005), no. 10–12, 1697–1708. 10.1016/j.camwa.2005.05.008Search in Google Scholar
[5] A. Bernardini and P. E. Ricci, Bell polynomials and differential equations of Freud-type polynomials, Math. Comput. Modelling 36 (2002), no. 9–10, 1115–1119. 10.1016/S0895-7177(02)00262-5Search in Google Scholar
[6] R. P. Boas, Jr. and R. C. Buck, Polynomials defined by generating relations, Amer. Math. Monthly 63 (1956), 626–632. 10.1080/00029890.1956.11988880Search in Google Scholar
[7] R. P. Boas, Jr. and R. C. Buck, Polynomial Expansions of Analytic Functions, Ergeb. Math. Grenzgeb. (3) 19, Springer, Berlin, 1958. 10.1007/978-3-642-87887-9Search in Google Scholar
[8] W. C. Brenke, On generating functions of polynomial systems, Amer. Math. Monthly 52 (1945), 297–301. 10.1080/00029890.1945.11991572Search in Google Scholar
[9] M. Bruschi and P. E. Ricci, Lucas and Čebyšev polynomials in several variables, Rend. Mat. (6) 13 (1980), no. 4, 507–529. Search in Google Scholar
[10] C. Cassisa and P. E. Ricci, Orthogonal invariants and the Bell polynomials, Rend. Mat. Appl. (7) 20 (2000), 293–303. Search in Google Scholar
[11] G. Dattoli, Hermite–Bessel and Laguerre–Bessel functions: A by-product of the monomiality principle, Advanced Special Functions and Applications (Melfi 1999), Proc. Melfi Sch. Adv. Top. Math. Phys. 1, Aracne, Rome (2000), 147–164. Search in Google Scholar
[12] G. Dattoli, B. Germano, M. R. Martinelli and P. E. Ricci, Monomiality and partial differential equations, Math. Comput. Modelling 50 (2009), no. 9–10, 1332–1337. 10.1016/j.mcm.2009.06.013Search in Google Scholar
[13] G. Dattoli and P. E. Ricci, Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions, Georgian Math. J. 10 (2003), no. 3, 481–494. 10.1515/GMJ.2003.481Search in Google Scholar
[14] A. Di Cave and P. E. Ricci, On Bell polynomials and Fibonacci and Bernoulli numbers, Matematiche (Catania) 35 (1980), no. 1–2, 84–95. Search in Google Scholar
[15] F. Faà di Bruno, Théorie des Formes Binaires, Librarie Brero, Torino, 1876. Search in Google Scholar
[16] D. Fujiwara, Generalized Bell polynomials, Sūgaku 42 (1990), no. 1, 89–90. Search in Google Scholar
[17] J. Ginsburg, Iterated exponentials, Scripta Math. 11 (1945), 340–353. Search in Google Scholar
[18] T. Isoni, P. Natalini and P. E. Ricci, Symbolic computation of Newton sum rules for the zeros of orthogonal polynomials, Advanced Special Functions and Integration Methods (Melfi 2000), Proc. Melfi Sch. Adv. Top. Math. Phys. 2, Aracne, Rome (2001), 97–112. Search in Google Scholar
[19] T. Isoni, P. Natalini and P. E. Ricci, Symbolic computation of Newton sum rules for the zeros of polynomial eigenfunctions of linear differential operators, Numer. Algorithms 28 (2001), no. 1–4, 215–227. 10.1023/A:1014059219005Search in Google Scholar
[20] K. K. Kataria and P. Vellaisamy, Simple parametrization methods for generating Adomian polynomials, Appl. Anal. Discrete Math. 10 (2016), no. 1, 168–185. 10.2298/AADM160123001KSearch in Google Scholar
[21] K. K. Kataria and P. Vellaisamy, Some results associated with Adomian and Bell polynomials, preprint (2016), https://arxiv.org/abs/1608.06880. Search in Google Scholar
[22] P. Natalini and P. E. Ricci, An extension of the Bell polynomials, Comput. Math. Appl. 47 (2004), no. 4–5, 719–725. 10.1016/S0898-1221(04)90059-4Search in Google Scholar
[23] P. Natalini and P. E. Ricci, Bell polynomials and modified Bessel functions of half-integral order, Appl. Math. Comput. 268 (2015), 270–274. 10.1016/j.amc.2015.06.069Search in Google Scholar
[24] P. Natalini and P. E. Ricci, Remarks on Bell and higher order Bell polynomials and numbers, Cogent Math. 3 (2016), Article ID 1220670. 10.1080/23311835.2016.1220670Search in Google Scholar
[25] S. Noschese and P. E. Ricci, Differentiation of multivariable composite functions and Bell polynomials, J. Comput. Anal. Appl. 5 (2003), no. 3, 333–340. 10.1023/A:1023227705558Search in Google Scholar
[26] F. Qi, D.-W. Niu, D. Lim and B.-N. Guo, Some properties and an application of multivariate exponential polynomials, preprint (2018), https://hal.archives-ouvertes.fr/hal-01745173. 10.1002/mma.6095Search in Google Scholar
[27] P. N. Rai and S. N. Singh, Generalization of Bell polynomials and related operational formula, Vijnana Parishad Anusandhan Patrika 25 (1982), no. 3, 251–258. Search in Google Scholar
[28] P. E. Ricci, P. Natalini and G. Bretti, Sheffer and Brenke polynomials associated with generalized Bell numbers, Jñānābha 47 (2017), no. 2, 337–352. Search in Google Scholar
[29] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958. Search in Google Scholar
[30] D. Robert, Invariants orthogonaux pour certaines classes d’opérateurs, J. Math. Pures Appl. (9) 52 (1973), 81–114. Search in Google Scholar
[31] S. Roman, The formula of Faà di Bruno, Amer. Math. Monthly 87 (1980), no. 10, 805–809. 10.1080/00029890.1980.11995156Search in Google Scholar
[32] S. Roman, The Umbral Calculus, Pure Appl. Math. 111, Academic Press, New York, 1984. Search in Google Scholar
[33] S. M. Roman and G.-C. Rota, The umbral calculus, Adv. Math. 27 (1978), no. 2, 95–188. 10.1016/0001-8708(78)90087-7Search in Google Scholar
[34] I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. 10.1215/S0012-7094-39-00549-1Search in Google Scholar
[35] N. J. A. Sloane, The on-line encyclopedia of integer sequences, preprint (2016), http://oeis.org. Search in Google Scholar
[36] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1984. Search in Google Scholar
[37] W. Wang and T. Wang, Identities on Bell polynomials and Sheffer sequences, Discrete Math. 309 (2009), no. 6, 1637–1648. 10.1016/j.disc.2008.02.036Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston