IJPAM: Volume 115, No. 1 (2017)

Title

$M$-POLYNOMIALS AND TOPOLOGICAL
INDICES OF SILICATE AND OXIDE NETWORKS

Authors

Muhammad Javaid$^1$, Chahn Yong Jung$^2$
$^1$Department of Mathematics
Government College University
Lahore, 54000, PAKISTAN
$^{2}$Department of Business Administration
Gyeongsang National University
Jinju, 52828, KOREA

Abstract

A topological index is a numeric quantity that characterizes the whole structure of a molecular graph of the chemical compound and helps to understand its physical features, chemical reactivities and boiling activities. In 1936, Pólya introduced the concept of a counting polynomial in chemistry and Wiener in 1947 made the use of a topological index working on the boiling point of paraffin. The literature on the counting polynomials and the topological indices of the molecular graphs has grown enormously since those times. In this paper, we study the $M$-polynomials of the silicate, chain silicate and oxide networks and use these polynomials as a latest developed tool to compute the certain degree-based topological indices such as first Zagreb, second Zagreb, second modified Zagreb, general Randić, reciprocal general Randić, symmetric division deg, harmonic, inverse sum and the augmented Zagreb. we also include a comparison between all the obtained results to show the better one.

History

Received: May 8, 2017
Revised: June 18, 2017
Published: June 29, 2017

AMS Classification, Key Words

AMS Subject Classification: 05C07, 92E10
Key Words and Phrases: $M$-polynomials, Zagreb indices, silicate network, oxide network

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
D. Amić, D. Bešlo, B. Lučić, S. Nikolić, N. Trinajstić, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci., 38 (1998), 819-822, doi: https://doi.org/10.1021/ci980039b.

2
M. Bača, J. Horváthová, M. Mokrišová, A. Semaničová-Feňovčková, A. Suhányiová, On topological indices of a carbon nanotube network, Canad. J. Chem. 93 (2015), 1157-1160, doi: https://doi.org/10.1139/cjc-2015-0175.

3
M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiová, On topological indices of fullerenes, Appl. Math. Comput., 251 (2015), 154-161, doi: https://doi.org/10.1016/j.amc.2014.11.069.

4
B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin., 50 (1998), 225-233.

5
F.M. Brückler, T. Došlić, A. Graovac, I. Gutman, On a class of distance-based molecular structure descriptors, Chem. Phys. Lett., 503 (2011), 336-338, doi: https://doi.org/10.1016/j.cplett.2011.01.033.

6
E. Deutsch, S. Klavžar, $M$-polynomial and degree-based topological indices, Iran. J. Math. Chem., 6 (2015), 93-102, doi: https://doi.org/10.22052/ijmc.2015.10106.

7
J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.

8
M.V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, Nova Science Publ. Inc, New York, 2000.

9
B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem., 48 (2010), 370-380, doi: https://doi.org/10.1007/s10910-010-9677-3.

10
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351-361, doi: https://doi.org/10.5562/cca2294.

11
I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.

12
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538, doi: https://doi.org/10.1016/0009-2614(72)85099-1.

13
L.H. Hall, L.B. Kier, Molecular Connectivity in Chemistry and Drug Research, Academic Press, Boston, 1976.

14
F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.

15
M. Javaid, M.U. Rehman, J. Cao, Topological indices of rhombus type silicate and oxide networks, Canan. J. Chem., 95 (2017), 134-143, doi: https://doi.org/10.1139/cjc-2016-0486.

16
S. Klavžar, I. Gutman, A Comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci., 36 (1996), 1001-1003, doi: https://doi.org/10.1021/ci9603689.

17
M.A. Malik, M. Imran, On multiple Zagreb indices of $TiO_2$ nanotubes, Acta Chim. Slov., 62 (2015), 973-976, doi: https://doi.org/10.17344/acsi.2015.1746.

18
M. Munir, W. Nazeer, Z. Shahzadi, S.M. Kang, $M$-polynomial and degree-based topological indices of polyhex nanotubes, Symmetry, 8 (2016), Article ID 149, 8 pages, doi: https://doi.org/10.3390/sym8120149.

19
G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math., 68 (1936), 145-253, doi: https://doi.org/10.1007/BF02546665.

20
B. Rajan, A. William, C. Grigorious, S. Stephen, On certain topological indices of silicate, honeycomb and hexagonal networks, J. Comp. Math. Sci., 3 (2012), 530-535.

21
M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609-6615, doi: https://doi.org/10.1021/ja00856a001.

22
G. Rucker, C. Rucker, On topological indices, boiling points, and cycloalkanes, J. Chem. Inf. Comput. Sci., 39 (1999), 788-802, doi: https://doi.org/10.1021/ci9900175.

23
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH Verlag, Weinheim, Germany, 2000.

24
D.B. West, Introduction to Graph Theory, Printce Hall, Inc., New Jersery, 1996.

25
H.J. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17-20, doi: https://doi.org/10.1021/ja01193a005.

How to Cite?

DOI: 10.12732/ijpam.v115i1.11 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 1
Pages: 129 - 152


$M$-POLYNOMIALS AND TOPOLOGICAL INDICES OF SILICATE AND OXIDE NETWORKS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).