Essential dimension
HTML articles powered by AMS MathViewer
- by Alexander S. Merkurjev PDF
- Bull. Amer. Math. Soc. 54 (2017), 635-661 Request permission
Abstract:
In this paper we survey research on the essential dimension that was introduced by J. Buhler and Z. Reichstein. Informally speaking, the essential dimension of a class of algebraic objects is the minimal number of algebraically independent parameters one needs to define any object in the class. The notion of essential dimension, which is defined in elementary terms, has surprising connections to many areas of algebra, such as algebraic geometry, algebraic $K$-theory, Galois cohomology, representation theory of algebraic groups, theory of fibered categories and valuation theory. The highlights of the survey are the computations of the essential dimensions of finite groups, groups of multiplicative type and the spinor groups.References
- S. A. Amitsur, L. H. Rowen, and J.-P. Tignol, Division algebras of degree $4$ and $8$ with involution, Israel J. Math. 33 (1979), no. 2, 133–148. MR 571249, DOI 10.1007/BF02760554
- Sanghoon Baek, Essential dimension of simple algebras with involutions, Bull. Lond. Math. Soc. 44 (2012), no. 3, 578–590. MR 2967003, DOI 10.1112/blms/bdr120
- Sanghoon Baek and Alexander S. Merkurjev, Essential dimension of central simple algebras, Acta Math. 209 (2012), no. 1, 1–27. MR 2979508, DOI 10.1007/s11511-012-0080-8
- G. Berhuy and Z. Reichstein, On the notion of canonical dimension for algebraic groups, Adv. Math. 198 (2005), no. 1, 128–171. MR 2183253, DOI 10.1016/j.aim.2004.12.004
- Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330. MR 2029168
- Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli, Essential dimension, spinor groups, and quadratic forms, Ann. of Math. (2) 171 (2010), no. 1, 533–544. MR 2630047, DOI 10.4007/annals.2010.171.533
- J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR 1457337, DOI 10.1023/A:1000144403695
- Vladimir Chernousov and Alexander Merkurjev, Essential dimension of spinor and Clifford groups, Algebra Number Theory 8 (2014), no. 2, 457–472. MR 3212863, DOI 10.2140/ant.2014.8.457
- J.-L. Colliot-Thélène, N. A. Karpenko, and A. S. Merkurjev, Rational surfaces and the canonical dimension of the group $\textrm {PGL}_6$, Algebra i Analiz 19 (2007), no. 5, 159–178.
- M. Demazure and A Grothendieck, Schémas en groupes, SGA 3, vol. 1, Springer-Verlag, Berlin, 1970.
- Alexander Duncan, Essential dimensions of $A_7$ and $S_7$, Math. Res. Lett. 17 (2010), no. 2, 263–266. MR 2644373, DOI 10.4310/MRL.2010.v17.n2.a5
- Mathieu Florence, On the essential dimension of cyclic $p$-groups, Invent. Math. 171 (2008), no. 1, 175–189. MR 2358058, DOI 10.1007/s00222-007-0079-5
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, American Mathematical Society, Providence, RI, 2003. MR 1999383, DOI 10.1090/ulect/028
- Skip Garibaldi, Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc. 200 (2009), no. 937, xii+81. With an appendix by Detlev W. Hoffmann. MR 2528487, DOI 10.1090/memo/0937
- S. Garibaldi and R. Guralnick, Spinors and essential dimension, arXiv:1601.00590v2 [math.GR] (17 Mar 2016), 20 pages.
- V. V. Ishkhanov, B. B. Lur′e, and D. K. Faddeev, The embedding problem in Galois theory, Translations of Mathematical Monographs, vol. 165, American Mathematical Society, Providence, RI, 1997. Translated from the 1990 Russian original by N. B. Lebedinskaya. MR 1454614, DOI 10.1090/mmono/165
- N. A. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties, Algebra i Analiz 7 (1995), no. 4, 196–213 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1996), no. 4, 649–661. MR 1356536
- Nikita A. Karpenko, On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc. 15 (2000), no. 1, 1–22. MR 1751923
- Nikita A. Karpenko, Incompressibility of products of pseudo-homogeneous varieties, Canad. Math. Bull. 59 (2016), no. 4, 824–833. [Paging previously given as 1–10]. MR 3563761, DOI 10.4153/CMB-2016-024-4
- Nikita A. Karpenko, Canonical dimension, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 146–161. MR 2827789
- Nikita A. Karpenko and Alexander S. Merkurjev, Canonical $p$-dimension of algebraic groups, Adv. Math. 205 (2006), no. 2, 410–433. MR 2258262, DOI 10.1016/j.aim.2005.07.013
- Nikita A. Karpenko and Alexander S. Merkurjev, Essential dimension of finite $p$-groups, Invent. Math. 172 (2008), no. 3, 491–508. MR 2393078, DOI 10.1007/s00222-007-0106-6
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- N. Lemire, Essential dimension of algebraic groups and integral representations of Weyl groups, Transform. Groups 9 (2004), no. 4, 337–379. MR 2105732, DOI 10.1007/s00031-004-9003-x
- M. Lorenz, Z. Reichstein, L. H. Rowen, and D. J. Saltman, Fields of definition for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651–670. MR 2009442, DOI 10.1112/S0024610703004678
- Roland Lötscher, Mark MacDonald, Aurel Meyer, and Zinovy Reichstein, Essential dimension of algebraic tori, J. Reine Angew. Math. 677 (2013), 1–13. MR 3039772, DOI 10.1515/crelle.2012.010
- Roland Lötscher, A fiber dimension theorem for essential and canonical dimension, Compos. Math. 149 (2013), no. 1, 148–174. MR 3011881, DOI 10.1112/S0010437X12000565
- Alexander S. Merkurjev, Essential dimension, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299–325. MR 2537108, DOI 10.1090/conm/493/09676
- Alexander S. Merkurjev, Essential $p$-dimension of $\textrm {PGL}(p^2)$, J. Amer. Math. Soc. 23 (2010), no. 3, 693–712. MR 2629984, DOI 10.1090/S0894-0347-10-00661-2
- Alexander S. Merkurjev, A lower bound on the essential dimension of simple algebras, Algebra Number Theory 4 (2010), no. 8, 1055–1076. MR 2832634, DOI 10.2140/ant.2010.4.1055
- Alexander S. Merkurjev, Essential dimension: a survey, Transform. Groups 18 (2013), no. 2, 415–481. MR 3055773, DOI 10.1007/s00031-013-9216-y
- Aurel Meyer and Zinovy Reichstein, The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra Number Theory 3 (2009), no. 4, 467–487. MR 2525560, DOI 10.2140/ant.2009.3.467
- Aurel Meyer and Zinovy Reichstein, An upper bound on the essential dimension of a central simple algebra, J. Algebra 329 (2011), 213–221. MR 2769323, DOI 10.1016/j.jalgebra.2009.09.019
- A. M. Popov, Finite stationary subgroups in general position of simple linear Lie groups, Trudy Moskov. Mat. Obshch. 48 (1985), 7–59, 263 (Russian). MR 830410
- Yuri Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012), no. 3, 563–600. MR 2914804, DOI 10.1090/S1056-3911-2011-00586-9
- Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265–304. MR 1780933, DOI 10.1007/BF01679716
- Zinovy Reichstein and Boris Youssin, Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties, Canad. J. Math. 52 (2000), no. 5, 1018–1056. With an appendix by János Kollár and Endre Szabó. MR 1782331, DOI 10.4153/CJM-2000-043-5
- M. Rost, On the galois cohomology of $spin(14)$, https://www.math.uni-bielefeld.de/ rost /data/spin-14.pdf (2006).
- Anthony Ruozzi, Essential $p$-dimension of $\textrm {PGL}_n$, J. Algebra 328 (2011), 488–494. MR 2745579, DOI 10.1016/j.jalgebra.2010.07.028
- Jean-Pierre Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque 227 (1995), Exp. No. 783, 4, 229–257 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. MR 1321649
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- J.-P. Tignol, Algèbres indécomposables d’exposant premier, Adv. in Math. 65 (1987), no. 3, 205–228 (French). MR 904723, DOI 10.1016/0001-8708(87)90022-3
Additional Information
- Alexander S. Merkurjev
- Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 191878
- ORCID: 0000-0002-4447-1838
- Email: [email protected]
- Received by editor(s): October 17, 2016
- Published electronically: December 19, 2016
- Additional Notes: The work has been supported by the NSF grant DMS #1160206
- © Copyright 2016 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 54 (2017), 635-661
- MSC (2010): Primary 14L30, 20G10, 11E72
- DOI: https://doi.org/10.1090/bull/1564
- MathSciNet review: 3683628