Arithmetic on curves
HTML articles powered by AMS MathViewer
- by Barry Mazur PDF
- Bull. Amer. Math. Soc. 14 (1986), 207-259
References
- André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177, DOI 10.1007/978-0-8176-4571-7
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355 [Fo] D. H. Fowler, Archimedes Cattle Problem and the Pocket Calculating Machine, Preprint, Math. Inst. Univ. of Warwick, Coventry, 1980.
- Jacob Klein, Greek mathematical thought and the origin of algebra, The M.I.T. Press, Cambridge, Mass.-London, 1968. Translated from the German by Eva Brann; With an appendix containing Vieta’s Introduction to the analytical art, translated from the Latin by J. Winfree Smith. MR 0472317
- François Viète, The analytic art, Kent State University Press, Kent, OH, 1983. Nine studies in algebra, geometry and trigonometry from the Opus restitutae mathematicae analyseos, seu algebrâ novâ; Translated from the Latin and with an introduction by T. Richard Witmer. MR 731262
- David Hilbert, Mathematical problems, Math. Today (Southend-on-Sea) 36 (2000), no. 1, 14–17. Lecture delivered before the International Congress of Mathematicians at Paris in 1900; Translated from the German by Mary Winston Neson. MR 1748440
- Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233–269. MR 317916, DOI 10.2307/2318447
- Martin Davis, Yuri Matijasevič, and Julia Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 323–378. (loose erratum). MR 0432534
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Victor Klee, Some unsolved problems in plane geometry, Math. Mag. 52 (1979), no. 3, 131–145. MR 533432, DOI 10.2307/2690274
- L. J. Mordell, Rational quadrilaterals, J. London Math. Soc. 35 (1960), 277–282. MR 124279, DOI 10.1112/jlms/s1-35.3.277 [L 1] S. Lang, Une activité vivante: faire des mathématiques, Rev. Palais de la Découverte 11 (1983), n° 104, 27-62.
- C. Herbert Clemens, A scrapbook of complex curve theory, University Series in Mathematics, Plenum Press, New York-London, 1980. MR 614289
- Spencer Bloch, The proof of the Mordell conjecture, Math. Intelligencer 6 (1984), no. 2, 41–47. MR 738906, DOI 10.1007/BF03024155 [W 1928] A. Weil, L’arithmétique sur les courbes algébriques, in André Weil, Oeuvres Scientifiques, Collected Papers, vol. I (1926-1951), Springer-Verlag, New York, Heidelberg and Berlin, 1979, pp. 11-46. [W 1929] A. Weil, Sur un théorème de Mordell, in André Weil, Oeuvres Scientifiques, Collected Papers, vol. I (1926-1951), Springer-Verlag, New York, Heidelberg and Berlin, 1979, pp. 47-56.
- Egbert Brieskorn and Horst Knörrer, Ebene algebraische Kurven, Birkhäuser Verlag, Basel-Boston, Mass., 1981 (German). MR 646612
- David Mumford, Curves and their Jacobians, University of Michigan Press, Ann Arbor, Mich., 1975. MR 0419430
- Serge Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0142550 [Se 1] J.-P. Serre, Autour du théorème de Mordell-Weil, I & II (Notes of a course given at the Collège de France 1980, edited by M. Waldschmidt), Publ. Math. Univ. Pierre et Marie Curie., 1985.
- Gary Cornell and Joseph H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969, DOI 10.1007/978-1-4613-8655-1
- J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835 [De] P. Deligne, Preuve des conjectures de Tate et Shafarevich [d’après G. Faltings], Séminaire Bourbaki, exposé n° 616, Novembre 1983. [Szp 1] L. Szpiro, La conjecture de Mordell [d’après G. Faltings], Séminaire Bourbaki, exposé n° 619, Novembre 1983.
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings and Gisbert Wüstholz (eds.), Rational points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig; distributed by Heyden & Son, Inc., Philadelphia, PA, 1984. Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn, 1983/1984. MR 766568, DOI 10.1007/978-3-322-83918-3
- Lucien Szpiro (ed.), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Société Mathématique de France, Paris, 1985. Papers from the seminar held at the École Normale Supérieure, Paris, 1983–84; Astérisque No. 127 (1985) (1985). MR 801916
- Norbert A’Campo, Sur la première partie du seizième problème de Hilbert, Séminaire Bourbaki (1978/79), Lecture Notes in Math., vol. 770, Springer, Berlin, 1980, pp. Exp. No. 537, pp. 208–227 (French). MR 572426
- M. K. Agrawal, J. H. Coates, D. C. Hunt, and A. J. van der Poorten, Elliptic curves of conductor $11$, Math. Comp. 35 (1980), no. 151, 991–1002. MR 572871, DOI 10.1090/S0025-5718-1980-0572871-5
- S. Ju. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293 (Russian). MR 0321933
- J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), no. 3, 337–342. MR 724532, DOI 10.1016/0022-314X(83)90051-3
- E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983), no. 1, 11–32. MR 707346, DOI 10.1007/BF01393823
- A. Bremner and J. W. S. Cassels, On the equation $Y^{2}=X(X^{2}+p)$, Math. Comp. 42 (1984), no. 165, 257–264. MR 726003, DOI 10.1090/S0025-5718-1984-0726003-4
- Joe P. Buhler, Benedict H. Gross, and Don B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank $3$, Math. Comp. 44 (1985), no. 170, 473–481. MR 777279, DOI 10.1090/S0025-5718-1985-0777279-X
- Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. MR 808103, DOI 10.1215/S0012-7094-85-05240-8 [de F] Michele de Franchis, Un teorema sulle involuzioni irrazionali, Rend. Circ. Mat. Palermo 36 (1913), 368.
- H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. MR 77577, DOI 10.1112/S0025579300000814
- Mireille Deschamps, Courbes de genre géométrique borné sur une surface de type général [d’après F. A. Bogomolov], Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., vol. 710, Springer, Berlin, 1979, pp. Exp. No. 519, pp. 233–247 (French). MR 554224
- Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur $\textbf {Z}$, Invent. Math. 81 (1985), no. 3, 515–538 (French). MR 807070, DOI 10.1007/BF01388584
- Hans Grauert, Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 131–149 (German). MR 222087, DOI 10.1007/BF02684399
- Marshall Hall Jr., The Diophantine equation $x^{3}-y^{2}=k$, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 173–198. MR 0323705
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Tsuyoshi Hayashida, A class number associated with the product of an elliptic curve with itself, J. Math. Soc. Japan 20 (1968), 26–43. MR 233804, DOI 10.2969/jmsj/02010026
- Tsuyoshi Hayashida and Mieo Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan 17 (1965), 1–16. MR 201434, DOI 10.2969/jmsj/01710001
- Alan Howard and Andrew J. Sommese, On the theorem of de Franchis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 3, 429–436. MR 739918
- A. Hurwitz, Über die diophantische Cleichung $x^3y+y^3z+z^3x=0$, Math. Ann. 65 (1908), no. 3, 428–430 (German). MR 1511476, DOI 10.1007/BF01456422
- M. A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 21–23. MR 510395, DOI 10.1017/S0305004100055444 [Ku] B. Kuhn, On the canonical Galois closure of the universal elliptic curve over X (n), Ph.D. thesis, Harvard Univ., 1985.
- Serge Lang, Integral points on curves, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 27–43. MR 130219, DOI 10.1007/BF02698777
- Serge Lang, Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229–234. MR 190146, DOI 10.1007/BF02410091
- Serge Lang, Higher dimensional diophantine problems, Bull. Amer. Math. Soc. 80 (1974), 779–787. MR 360464, DOI 10.1090/S0002-9904-1974-13516-0
- Ju. I. Manin, Proof of an analogue of Mordell’s conjecture for algebraic curves over function fields, Dokl. Akad. Nauk SSSR 152 (1963), 1061–1063 (Russian). MR 0154868
- R. C. Mason, On Thue’s equation over function fields, J. London Math. Soc. (2) 24 (1981), no. 3, 414–426. MR 635873, DOI 10.1112/jlms/s2-24.3.414
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- J.-F. Mestre, Courbes elliptiques et formules explicites, Seminar on number theory, Paris 1981–82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 179–187 (French). MR 729167
- Jean-François Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), no. 2, 209–232 (French). MR 844410
- Jean-François Mestre, Points rationnels de la courbe modulaire $X_{0}(169)$, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, v, 17–27 (French). MR 584269
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- M. S. Narasimhan and M. V. Nori, Polarisations on an abelian variety, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), no. 2, 125–128. MR 653950, DOI 10.1007/BF02837283
- Junjiro Noguchi, A higher-dimensional analogue of Mordell’s conjecture over function fields, Math. Ann. 258 (1981/82), no. 2, 207–212. MR 641826, DOI 10.1007/BF01450536
- A. N. Paršin, Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1191–1219 (Russian). MR 0257086
- A. N. Paršin, Quelques conjectures de finitude en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 467–471. MR 0427323 [Se 2] J.-P. Serre, Courbes elliptiques de conducteur 11, Lectures delivered at the College de France 1984/85.
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823 [Se 5] J.-P. Serre, Résumé des cours de 1984-1985, Annuaire du Collège de France, 1985. [Sev] Francesco Seven, Sugli integrali abeliani riducibili, Rend. Accad. Lincei Ser. V 23 (1914), 581-587.
- I. R. Šafarevič, Algebraic number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 163–176 (Russian). MR 0202709
- J. H. Silverman, Representations of integers by binary forms and the rank of the Mordell-Weil group, Invent. Math. 74 (1983), no. 2, 281–292. MR 723218, DOI 10.1007/BF01394317
- Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Société Mathématique de France, Paris, 1981 (French). Astérisque No. 86 (1981) (1981). MR 642675
- John Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 288–295. MR 0175892
- Paul Vojta, A higher-dimensional Mordell conjecture, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 341–353. MR 861984
- Hermann Weyl, Algebraic Theory of Numbers, Annals of Mathematics Studies, No. 1, Princeton University Press, Princeton, N. J., 1940. MR 0002354, DOI 10.1515/9781400882809
- Ju. G. Zarhin, A finiteness theorem for isogenies of abelian varieties over function fields of finite characteristic, Funkcional. Anal. i Priložen. 8 (1974), no. 4, 31–34 (Russian). MR 0354684
- Ju. G. Zarhin, A remark on endomorphisms of abelian varieties over function fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 471–474 (Russian). MR 0354689
- Ju. G. Zarhin, A finiteness theorem for isogenies of abelian varieties over function fields of finite characteristic, Funkcional. Anal. i Priložen. 8 (1974), no. 4, 31–34 (Russian). MR 0354684
- Yu. G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Invent. Math. 79 (1985), no. 2, 309–321. MR 778130, DOI 10.1007/BF01388976
Additional Information
- Journal: Bull. Amer. Math. Soc. 14 (1986), 207-259
- MSC (1985): Primary 14Hxx, 14Kxx, 11Dxx, 00-01, 01-01, 01A65, 11-01, 11G05, 11G10, 11G15
- DOI: https://doi.org/10.1090/S0273-0979-1986-15430-3
- MathSciNet review: 828821