Catalan’s Conjecture: Another old Diophantine problem solved
HTML articles powered by AMS MathViewer
- by Tauno Metsänkylä PDF
- Bull. Amer. Math. Soc. 41 (2004), 43-57 Request permission
Abstract:
Catalan’s Conjecture predicts that 8 and 9 are the only consecutive perfect powers among positive integers. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu. A deep theorem about cyclotomic fields plays a crucial role in his proof. Like Fermat’s problem, this problem has a rich history with some surprising turns. The present article surveys the main lines of this history and outlines Mihăilescu’s brilliant proof.References
- Yann Bugeaud and Guillaume Hanrot, Un nouveau critère pour l’équation de Catalan, Mathematika 47 (2000), no. 1-2, 63–73 (2002) (French, with English and French summaries). MR 1924488, DOI 10.1112/S0025579300015722
- J. W. S. Cassels, On the equation $a^{x}-b^{y}=1$. II, Proc. Cambridge Philos. Soc. 56 (1960), 97–103. MR 114791, DOI 10.1017/s0305004100034332 [CAT]CAT E. Catalan, Note extraite d’une lettre adressée à l’éditeur, J. Reine Angew. Math. 27 (1844), 192.
- E. Z. Chein, A note on the equation $x^{2}=y^{q}+1$, Proc. Amer. Math. Soc. 56 (1976), 83–84. MR 404133, DOI 10.1090/S0002-9939-1976-0404133-1
- Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR 0530404
- Karl Dilcher, Fermat numbers, Wieferich and Wilson primes: computations and generalizations, Public-key cryptography and computational number theory (Warsaw, 2000) de Gruyter, Berlin, 2001, pp. 29–48. MR 1881625
- Ralph Greenberg, On $p$-adic $L$-functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139–158. MR 444614, DOI 10.1017/S0027763000022583
- Seppo Hyyrö, Über das Catalansche Problem, Ann. Univ. Turku. Ser. A I 79 (1964), 10 (German). MR 179127
- Seppo Hyyrö, Über die Gleichung $ax^{n}-by^{n}=z$ und das Catalansche Problem, Ann. Acad. Sci. Fenn. Ser. A I No. 355 (1964), 50 (German). MR 0205925
- K. Inkeri, On Catalan’s problem, Acta Arith. 9 (1964), 285–290. MR 168518, DOI 10.4064/aa-9-3-285-290
- K. Inkeri, On Catalan’s conjecture, J. Number Theory 34 (1990), no. 2, 142–152. MR 1042488, DOI 10.1016/0022-314X(90)90145-H [KER]KER W. Keller, J. Richstein, Solutions of the congruence $a^{p-1}\equiv 1 \pmod {p^{r}}$, Math. Comput. (to appear). [KNR]KNR J. Knauer, J. Richstein, The continuing search for Wieferich primes, preprint (2003).
- Chao Ko, On the Diophantine equation $x^{2}=y^{n}+1,\,xy\not =0$, Sci. Sinica 14 (1965), 457–460. MR 183684 [LEB]LEB V.A. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation $x^{m}=y^{2}+1$, Nouv. Ann. Math. 9 (1850), 178–181.
- Günter Lettl, A note on Thaine’s circular units, J. Number Theory 35 (1990), no. 2, 224–226. MR 1057325, DOI 10.1016/0022-314X(90)90115-8
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Maurice Mignotte, A criterion on Catalan’s equation, J. Number Theory 52 (1995), no. 2, 280–283. MR 1336750, DOI 10.1006/jnth.1995.1070
- Maurice Mignotte, Catalan’s equation just before 2000, Number theory (Turku, 1999) de Gruyter, Berlin, 2001, pp. 247–254. MR 1822013 [M1]M1 P. Mihăilescu, A class number free criterion for Catalan’s conjecture, J. Number Theory 99 (2003), 225–231. [M2]M2 P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, preprint (September 2, 2002), submitted. [NAG]NAG T. Nagell, Sur l’impossibilité de l’équation indéterminée $z^{p}+1=y^{2}$, Norsk Mat. Forenings Skrifter, Ser. I no. 4 (1921), 10 pp.
- Melvyn B. Nathanson, Catalan’s equation in $K(t)$, Amer. Math. Monthly 81 (1974), 371–373. MR 335436, DOI 10.2307/2319001
- Paulo Ribenboim, Catalan’s conjecture, Academic Press, Inc., Boston, MA, 1994. Are $8$ and $9$ the only consecutive powers?. MR 1259738
- Wolfgang Schwarz, A note on Catalan’s equation, Acta Arith. 72 (1995), no. 3, 277–279. MR 1347490, DOI 10.4064/aa-72-3-277-279
- Ray Steiner, Class number bounds and Catalan’s equation, Math. Comp. 67 (1998), no. 223, 1317–1322. MR 1468945, DOI 10.1090/S0025-5718-98-00966-1
- Francisco Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. (2) 128 (1988), no. 1, 1–18. MR 951505, DOI 10.2307/1971460
- R. Tijdeman, On the equation of Catalan, Acta Arith. 29 (1976), no. 2, 197–209. MR 404137, DOI 10.4064/aa-29-2-197-209
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Additional Information
- Tauno Metsänkylä
- Affiliation: Department of Mathematics, University of Turku, FIN-20014 Turku, Finland
- Email: [email protected]
- Received by editor(s): March 5, 2003
- Received by editor(s) in revised form: July 14, 2003
- Published electronically: September 5, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 41 (2004), 43-57
- MSC (2000): Primary 11D41, 00-02; Secondary 11R18
- DOI: https://doi.org/10.1090/S0273-0979-03-00993-5
- MathSciNet review: 2015449