On an integer’s infinitary divisors
HTML articles powered by AMS MathViewer
- by Graeme L. Cohen PDF
- Math. Comp. 54 (1990), 395-411 Request permission
Abstract:
The notions of unitary divisor and biunitary divisor are extended in a natural fashion to give k-ary divisors, for any natural number k. We show that we may sensibly allow k to increase indefinitely, and this leads to infinitary divisors. The infinitary divisors of an integer are described in full, and applications to the obvious analogues of the classical perfect and amicable numbers and aliquot sequences are given.References
- Krishnaswami Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. Ser. A 23 (1977), no. 1, 9–27. MR 439721, DOI 10.1017/s1446788700017304
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66–80. MR 112861, DOI 10.1007/BF01180473
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Peter Hagis Jr., Unitary amicable numbers, Math. Comp. 25 (1971), 915–918. MR 299551, DOI 10.1090/S0025-5718-1971-0299551-2
- Peter Hagis Jr., Lower bounds for unitary multiperfect numbers, Fibonacci Quart. 22 (1984), no. 2, 140–143. MR 742842
- Peter Hagis Jr., A systematic search for unitary hyperperfect numbers, Fibonacci Quart. 25 (1987), no. 1, 6–10. MR 872573
- Mohan Lal, Iterates of the unitary totient function, Math. Comp. 28 (1974), 301–302. MR 335419, DOI 10.1090/S0025-5718-1974-0335419-3
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- M. V. Subbarao and L. J. Warren, Unitary perfect numbers, Canad. Math. Bull. 9 (1966), 147–153. MR 195796, DOI 10.4153/CMB-1966-018-4
- D. Suryanarayana, The number of $k$-ary divisors of an integer, Monatsh. Math. 72 (1968), 445–450. MR 236130, DOI 10.1007/BF01300368
- D. Suryanarayana, The number of bi-unitary divisors of an integer, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971) Lecture Notes in Math., Vol. 251, Springer, Berlin, 1972, pp. 273–282. MR 0332692 D. Suryanarayana and R. Sita Rama Chandra Rao, The number of bi-unitary divisors of an integer. II, J. Indian Math. Soc. (N.S.) 39 (1975), 261-280 (1976).
- Marta Sved, Divisibility—with visibility, Math. Intelligencer 10 (1988), no. 2, 56–64. MR 932163, DOI 10.1007/BF03028359
- Herman J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984), no. 165, 219–223. MR 725997, DOI 10.1090/S0025-5718-1984-0725997-0
- Charles R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. 33 (1972), 39–42. MR 289403, DOI 10.1090/S0002-9939-1972-0289403-9
- Charles R. Wall, The fifth unitary perfect number, Canad. Math. Bull. 18 (1975), no. 1, 115–122. MR 376515, DOI 10.4153/CMB-1975-021-9
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 395-411
- MSC: Primary 11A25; Secondary 11A05
- DOI: https://doi.org/10.1090/S0025-5718-1990-0993927-5
- MathSciNet review: 993927