Integer sequences having prescribed quadratic character
HTML articles powered by AMS MathViewer
- by D. H. Lehmer, Emma Lehmer and Daniel Shanks PDF
- Math. Comp. 24 (1970), 433-451 Request permission
Abstract:
For the odd primes ${p_1} = 3,$, ${p_2} = 5, \cdots ,$ we determine integer sequences ${N_p}$ such that the Legendre symbol $({N \left / {\vphantom {N {{p_i}}}} \right . {{p_i}}}) = \pm 1$ for all ${p_i} \leqq p$ for a prescribed array of signs $\pm 1$; (i.e., for a prescribed quadratic character). We examine six quadratic characters having special interest and applications. We present tables of these ${N_p}$ and examine some applications, particularly to questions concerning extreme values for the smallest primitive root (of a prime $N$), the class number of the quadratic field $R(\surd - N)$, the real Dirichlet $L$ functions, and quadratic character sums.References
- W. H. Mills, Characters with preassigned values, Canadian J. Math. 15 (1963), 169–171. MR 156828, DOI 10.4153/CJM-1963-019-3 D. H. Lehmer, "An announcement concerning the Delay Line Sieve DLS-127," Math. Comp., v. 20, 1966, pp. 645–646.
- Marshall Hall, Quadratic residues in factorization, Bull. Amer. Math. Soc. 39 (1933), no. 10, 758–763. MR 1562725, DOI 10.1090/S0002-9904-1933-05730-0 Allan Cobham, The Recognition Problem for the Set of Perfect Squares, IBM Research Paper, R.C. 1704, April 26, 1966. M. Kraitchik, Recherches sur la Théorie des Nombres. Vol. 1, Paris, 1924, pp. 41–46.
- D. H. Lehmer, The Mechanical Combination of Linear Forms, Amer. Math. Monthly 35 (1928), no. 3, 114–121. MR 1521394, DOI 10.2307/2299504
- D. H. Lehmer, A sieve problem on“pseudo-squares.”, Math. Tables Aids Comput. 8 (1954), 241–242. MR 63388, DOI 10.1090/S0025-5718-1954-0063388-X
- A. E. Western and J. C. P. Miller, Tables of indices and primitive roots, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London 1968. MR 0246488
- Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- N. G. W. H. Beeger, Report on some calculations of prime numbers, Nieuw Arch. Wiskde 20 (1939), 48–50. MR 0000393 Luigi Poletti, "Atlante di centomila numeri primi di ordine quadratico entro cinque miliardi," UMT 62, MTAC, v. 2, 1947, p. 354.
- H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 222050, DOI 10.1307/mmj/1028999653 D. H. Lehmer, "On the function ${X^2} + X + A$," Sphinx, v. 6, 1936, pp. 212–214; v. 7, 1937, p. 40; v. 9, 1939, pp. 83–85. Mohan Lal & Daniel Shanks, "Class numbers and a high density of primes." (To appear.)
- R. Ayoub, S. Chowla, and H. Walum, On sums involving quadratic characters, J. London Math. Soc. 42 (1967), 152–154. MR 204382, DOI 10.1112/jlms/s1-42.1.152
- Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689–694. MR 223295, DOI 10.1090/S0025-5718-1967-0223295-5
- Daniel Shanks, On the conjecture of Hardy & Littlewood concerning the number of primes of the form $n^{2}+a$, Math. Comp. 14 (1960), 320–332. MR 120203, DOI 10.1090/S0025-5718-1960-0120203-6
- Daniel Shanks, Supplementary data and remarks concerning a Hardy-Littlewood conjecture, Math. Comp. 17 (1963), 188–193. MR 159797, DOI 10.1090/S0025-5718-1963-0159797-6
- Daniel Shanks, On Gauss’s class number problems, Math. Comp. 23 (1969), 151–163. MR 262204, DOI 10.1090/S0025-5718-1969-0262204-1 Edward T. Ordman, "Tables of class numbers for negative prime discriminants," UMT 29, Math. Comp., v. 23, 1969, p. 458.
- Morris Newman, Note on partitions modulo $5$, Math. Comp. 21 (1967), 481–482. MR 227127, DOI 10.1090/S0025-5718-1967-0227127-0 Peter Weinberger, Dissertation, University of California, Berkeley, Calif., June, 1969.
- Edgar Karst, The congruence $2^{p-1}\equiv 1$ $(mod$ $p^{2})$ and quadratic forms with high density of primes, Elem. Math. 22 (1967), 85–88. MR 215777 C. L. Siegel, "Über die Classenzahl quadratischer Zahlkorper," Acta Arith., v. 1, 1935, pp. 83–86. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. Bände 2, Chelsea, New York, 1953, §186, "Euler’s Reihen," pp. 673–676. MR 16, 904.
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 433-451
- MSC: Primary 10.03
- DOI: https://doi.org/10.1090/S0025-5718-1970-0271006-X
- MathSciNet review: 0271006