Synchronization points and associated dynamical invariants
HTML articles powered by AMS MathViewer
- by Richard Miles PDF
- Trans. Amer. Math. Soc. 365 (2013), 5503-5524 Request permission
Abstract:
This paper introduces new invariants for multiparameter dynamical systems. This is done by counting the number of points whose orbits intersect at time $n$ under simultaneous iteration of finitely many endomorphisms. We call these points synchronization points. The resulting sequences of counts together with generating functions and growth rates are subsequently investigated for homeomorphisms of compact metric spaces, toral automorphisms and compact abelian group epimorphisms. Synchronization points are also used to generate invariant measures and the distribution properties of these are analysed for the algebraic systems considered. Furthermore, these systems reveal strong connections between the new invariants and problems of active interest in number theory, relating to heights and greatest common divisors.References
- Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206. MR 683806, DOI 10.2307/2006975
- Nir Ailon and Zéev Rudnick, Torsion points on curves and common divisors of $a^k-1$ and $b^k-1$, Acta Arith. 113 (2004), no. 1, 31–38. MR 2046966, DOI 10.4064/aa113-1-3
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- Rufus Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974/75), no. 3, 193–202. MR 399413, DOI 10.1007/BF01762666
- Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55–102. MR 1355295, DOI 10.1090/S0002-9947-97-01634-6
- Yann Bugeaud, Pietro Corvaja, and Umberto Zannier, An upper bound for the G.C.D. of $a^n-1$ and $b^n-1$, Math. Z. 243 (2003), no. 1, 79–84. MR 1953049, DOI 10.1007/s00209-002-0449-z
- Fritz Carlson, Über ganzwertige Funktionen, Math. Z. 11 (1921), no. 1-2, 1–23 (German). MR 1544479, DOI 10.1007/BF01203188
- V. Chothi, G. Everest, and T. Ward, $S$-integer dynamical systems: periodic points, J. Reine Angew. Math. 489 (1997), 99–132. MR 1461206
- Pietro Corvaja and Umberto Zannier, A lower bound for the height of a rational function at $S$-unit points, Monatsh. Math. 144 (2005), no. 3, 203–224. MR 2130274, DOI 10.1007/s00605-004-0273-0
- Manfred Einsiedler and Douglas Lind, Algebraic $\Bbb Z^d$-actions of entropy rank one, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1799–1831. MR 2031042, DOI 10.1090/S0002-9947-04-03554-8
- Manfred Einsiedler, Douglas Lind, Richard Miles, and Thomas Ward, Expansive subdynamics for algebraic ${\Bbb Z}^d$-actions, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1695–1729. MR 1869066, DOI 10.1017/S014338570100181X
- G. Everest, V. Stangoe, and T. Ward, Orbit counting with an isometric direction, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 293–302. MR 2180241, DOI 10.1090/conm/385/07202
- Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, Mathematical Surveys and Monographs, vol. 104, American Mathematical Society, Providence, RI, 2003. MR 1990179, DOI 10.1090/surv/104
- Shmuel Friedland, Entropy of graphs, semigroups and groups, Ergodic theory of $\textbf {Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 319–343. MR 1411226, DOI 10.1017/CBO9780511662812.013
- W. Geller and M. Pollicott, An entropy for $\mathbf Z^2$-actions with finite entropy generators, Fund. Math. 157 (1998), no. 2-3, 209–220. Dedicated to the memory of Wiesław Szlenk. MR 1636888, DOI 10.4064/fm-157-2-3-209-220
- Young-One Kim, Jungseob Lee, and Kyewon K. Park, A zeta function for flip systems, Pacific J. Math. 209 (2003), no. 2, 289–301. MR 1978372, DOI 10.2140/pjm.2003.209.289
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49–68. MR 684244, DOI 10.1017/s0143385700009573
- D. A. Lind, A zeta function for $\textbf {Z}^d$-actions, Ergodic theory of $\textbf {Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 433–450. MR 1411232, DOI 10.1017/CBO9780511662812.019
- D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 411–419. MR 961739, DOI 10.1017/S0143385700004545
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Richard Miles, Zeta functions for elements of entropy rank-one actions, Ergodic Theory Dynam. Systems 27 (2007), no. 2, 567–582. MR 2308145, DOI 10.1017/S0143385706000794
- Richard Miles, Periodic points of endomorphisms on solenoids and related groups, Bull. Lond. Math. Soc. 40 (2008), no. 4, 696–704. MR 2441142, DOI 10.1112/blms/bdn052
- Richard Miles and Thomas Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1913–1930. MR 2279271, DOI 10.1017/S014338570600054X
- Richard Miles and Thomas Ward, Uniform periodic point growth in entropy rank one, Proc. Amer. Math. Soc. 136 (2008), no. 1, 359–365. MR 2350424, DOI 10.1090/S0002-9939-07-09018-1
- Richard Miles and Thomas Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1499–1507. MR 2465676, DOI 10.1090/S0002-9939-08-09649-4
- John Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), no. 3, 357–385. MR 955558
- Ryozo Morikawa, On power series with integer coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 2, 229–235. MR 382611
- K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form $p-1$ haben, Monatsh. Math. 59 (1955), 91–97 (German). MR 68569, DOI 10.1007/BF01302992
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc. 50 (2003), no. 8, 912–915. MR 1992789
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- T. B. Ward, Periodic points for expansive actions of $\textbf {Z}^d$ on compact abelian groups, Bull. London Math. Soc. 24 (1992), no. 4, 317–324. MR 1165372, DOI 10.1112/blms/24.4.317
- T. B. Ward, Almost all $S$-integer dynamical systems have many periodic points, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 471–486. MR 1619569, DOI 10.1017/S0143385798113378
Additional Information
- Richard Miles
- Affiliation: School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- Email: [email protected]
- Received by editor(s): March 13, 2011
- Received by editor(s) in revised form: March 4, 2012
- Published electronically: April 2, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 5503-5524
- MSC (2010): Primary 37A35, 37B05, 37C25, 37C85, 37P30, 11G50, 11Z05
- DOI: https://doi.org/10.1090/S0002-9947-2013-05829-1
- MathSciNet review: 3074380