Abstract
In the past five years, private companies, research institutions and public sector organizations have issued principles and guidelines for ethical artificial intelligence (AI). However, despite an apparent agreement that AI should be âethicalâ, there is debate about both what constitutes âethical AIâ and which ethical requirements, technical standards and best practices are needed for its realization. To investigate whether a global agreement on these questions is emerging, we mapped and analysed the current corpus of principles and guidelines on ethical AI. Our results reveal a global convergence emerging around five ethical principles (transparency, justice and fairness, non-maleficence, responsibility and privacy), with substantive divergence in relation to how these principles are interpreted, why they are deemed important, what issue, domain or actors they pertain to, and how they should be implemented. Our findings highlight the importance of integrating guideline-development efforts with substantive ethical analysis and adequate implementation strategies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Harari, Y. N. Reboot for the AI revolution. Nature 550, 324â327 (2017).
Appenzeller, T. The AI revolution in science. Science https://doi.org/10.1126/science.aan7064 (2017).
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255â260 (2015).
Stead, W. W. Clinical implications and challenges of artificial intelligence and deep learning. JAMA 320, 1107â1108 (2018).
Vayena, E., Blasimme, A. & Cohen, I. G. Machine learning in medicine: addressing ethical challenges. PLOS Med. 15, e1002689 (2018).
Awad, E. et al. The Moral Machine experiment. Nature 563, 59â64 (2018).
Science must examine the future of work. Nature 550, 301â302 (2017).
Brundage, M. et al. The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation (Future of Humanity Institute, University of Oxford, Centre for the Study of Existential Risk, University of Cambridge, Center for a New American Security, Electronic Frontier Foundation, OpenAI, 2018).
Zou, J. & Schiebinger, L. AI can be sexist and racist â itâs time to make it fair. Nature 559, 324â326 (2018).
Boddington, P. Towards a Code of Ethics for Artificial Intelligence (Springer, 2017).
Bostrom, N. & Yudkowsky, E. in The Cambridge Handbook of Artificial Intelligence (eds Frankish, K. & Ramsey, W. M.) 316â334 (Cambridge Univ. Press, 2014). https://doi.org/10.1017/CBO9781139046855.020
Etzioni, A. & Etzioni, O. AI assisted ethics. Ethics Inf. Technol. 18, 149â156 (2016).
Yuste, R. et al. Four ethical priorities for neurotechnologies and AI. Nature 551, 159â163 (2017).
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M. & Floridi, L. Artificial intelligence and the âgood societyâ: the US, EU, and UK approach. Sci. Eng. Ethics 24, 505â528 (2018).
Zeng, Y., Lu, E. & Huangfu, C. Linking artificial intelligence principles. Preprint at https://arxiv.org/abs/1812.04814 (2018).
Greene, D., Hoffmann, A. L. & Stark, L. Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. In Proc. 52nd Hawaii International Conference on System Sciences 2122â2131 (2019).
Crawford, K. & Calo, R. There is a blind spot in AI research. Nature 538, 311â313 (2016).
Altman, M., Wood, A. & Vayena, E. A harm-reduction framework for algorithmic fairness. IEEE Security Privacy 16, 34â45 (2018).
Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Preprint at https://arxiv.org/abs/1607.06520 (2016).
OâNeil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown, 2016).
Veale, M. & Binns, R. Fairer machine learning in the real world: mitigating discrimination without collecting sensitive data. Big Data Soc. https://doi.org/10.1177/2053951717743530 (2017).
Shoham, Y. et al. The AI Index 2018 Annual Report (AI Index Steering Committee, Human-Centered AI Initiative, Stanford University, 2018).
Sossin, L. & Smith, C. W. Hard choices and soft law: ethical codes, policy guidelines and the role of the courts in regulating government. Alberta Law Rev. 40, 867â893 (2003).
Campbell, A. & Glass, K. C. The legal status of clinical and ethics policies, codes, and guidelines in medical practice and research. McGill Law J. 46, 473â489 (2001).
Benkler, Y. Donât let industry write the rules for AI. Nature 569, 161 (2019).
Wagner, B. in Being Profiled: Cogitas Ergo Sum: 10 Years of Profiling the European Citizen (eds Bayamlioglu, E., Baraliuc, I., Janssens, L. A. W. & Hildebrandt, M.) 84â89 (Amsterdam Univ. Press, 2018).
Arksey, H. & OâMalley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19â32 (2005).
Pham, M. T. et al. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res. Synth. Meth. 5, 371â385 (2014).
Liberati, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLOS Medicine 6, e1000100 (2009).
Boddington, P. Alphabetical list of resources. Ethics for Artificial Intelligence https://www.cs.ox.ac.uk/efai/resources/alphabetical-list-of-resources/ (2018).
Winfield, A. A round up of robotics and AI ethics. Alan Winfieldâs Web Log http://alanwinfield.blogspot.com/2019/04/an-updated-round-up-of-ethical.html (2017).
National and international AI strategies. Future of Life Institute https://futureoflife.org/national-international-ai-strategies/ (2018)
Summaries of AI policy resources. Future of Life Institute https://futureoflife.org/ai-policy-resources/ (2018).
Hagstrom, C., Kendall, S. & Cunningham, H. Googling for grey: using Google and Duckduckgo to find grey literature. In Abstracts of the 23rd Cochrane Colloquium Vol. 10, LRO 3.6, 40 (Cochrane Database of Systematic Reviews, 2015).
Piasecki, J., Waligora, M. & Dranseika, V. Google search as an additional source in systematic reviews. Sci. Eng. Ethics 24, 809â810 (2017).
Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 6, e1000097 (2009).
Saldaña, J. The Coding Manual for Qualitative Researchers (SAGE, 2013).
Noblit, G. W. & Hare, R. D. Meta-Ethnography: Synthesizing Qualitative Studies (SAGE, 1988).
Daniels, N. Justice and Justification: Reflective Equilibrium in Theory and Practice (Cambridge Univ. Press, 1996).
Guidelines for artificial intelligence. Deutsche Telekom https://www.telekom.com/en/company/digital-responsibility/details/artificial-intelligence-ai-guideline-524366 (2018).
Transparency and trust in the cognitive era. IBM https://www.ibm.com/blogs/think/2017/01/ibm-cognitive-principles/ (2017).
Initial code of conduct for data-driven health and care technology. GOV.UK https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology (2019).
Diakopoulos, N. et al. Principles for accountable algorithms and a social impact statement for algorithms. FATML http://www.fatml.org/resources/principles-for-accountable-algorithms (2016).
AI principles of Telefónica. Telefónica https://www.telefonica.com/en/web/responsible-business/our-commitments/ai-principles (2018).
Declaration on Ethics and Data Protection in Artificial Intelligence (Commission Nationale de lâInformatique et des Libertés, European Data Protection Supervisor & Garante per la protezione dei dati personali, 2018).
Everyday Ethics for Artificial Intelligence (IBM, 2018).
Ethics Commission: Automated and Connected Driving (Federal Ministry of Transport and Digital Infrastructure, 2017).
Position on Robotics and Artificial Intelligence (Green Digital Working Group, 2016).
Principles of robotics. EPSRC https://epsrc.ukri.org/research/ourportfolio/themes/engineering/activities/principlesofrobotics/ (2011).
Ethics Guidelines for Trustworthy AI (High-Level Expert Group on AI, 2019).
Artificial intelligence principles and ethics. Smart Dubai http://www.smartdubai.ae/initiatives/ai-principles-ethics (2019).
Dawson, D. et al. Artificial Intelligence: Australiaâs Ethics Framework (Australian Government, 2019).
Artificial intelligence and machine learning: policy paper. Internet Society https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/ (2017).
Top 10 Principles for Ethical AI (UNI Global, 2017).
Statement on Artificial Intelligence, Robotics and âAutonomousâ Systems (European Group on Ethics in Science and New Technologies, 2018).
Big Data, Artificial Intelligence, Machine Learning and Data Protection. (ICO, 2017).
Universal guidelines for artificial intelligence. The Public Voice https://thepublicvoice.org/ai-universal-guidelines/ (2018).
Science, law and society (SLS) initiative. The Future Society https://web.archive.org/web/20180621203843/http://thefuturesociety.org/science-law-society-sls-initiative/ (2018).
Statement on Algorithmic Transparency and Accountability (ACM, 2017).
Dutch Artificial Intelligence Manifesto (Special Interest Group on Artificial Intelligence, 2018).
Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, Version 2 (IEEE, 2017).
The Toronto declaration: protecting the right to equality and non-discrimination in machine learning systems. Human Rights Watch https://www.hrw.org/news/2018/07/03/toronto-declaration-protecting-rights-equality-and-non-discrimination-machine (2018).
Floridi, L. et al. AI4Peopleâan ethical framework for a good ai society: opportunities, risks, principles, and recommendations. Minds Mach. 28, 589â707 (2018).
SAPâs guiding principles for artificial intelligence (AI). SAP https://www.sap.com/products/leonardo/machine-learning/ai-ethics.html#guiding-principles (2018).
Ethical Principles for Artificial Intelligence and Data Analytics (SIIA, 2017).
Koski, O. & Husso, K. Work in the Age of Artificial Intelligence (Ministry of Economic Affairs and Employment, 2018).
Digital decisions. Center for Democracy & Technology https://cdt.org/issue/privacy-data/digital-decisions/ (2019).
Ethics framework. MI Garage https://www.migarage.ai/ethics-framework/ (2019).
Business Ethics and Artificial Intelligence (Institute of Business Ethics, 2018).
Asilomar AI Principles. Future of Life Institute https://futureoflife.org/ai-principles/ (2017).
The responsible AI framework. PwC https://www.pwc.co.uk/services/audit-assurance/risk-assurance/services/technology-risk/technology-risk-insights/accelerating-innovation-through-responsible-ai/responsible-ai-framework.html (2019).
Whittaker, M. et al. AI Now Report 2018 (AI Now Institute, 2018).
Discussion Paper on AI and Personal Data â Fostering Responsible Development and Adoption of AI (Personal Data Protection Commission Singapore, 2018).
Artificial intelligence (AI) in health. RCP London https://www.rcplondon.ac.uk/projects/outputs/artificial-intelligence-ai-health (2018).
Responsible bots: 10 guidelines for developers of conversational AI. Microsoft https://www.microsoft.com/en-us/research/publication/responsible-bots/ (2018).
Villani, C. For a Meaningful Artificial Intelligence: Towards a French and European Strategy (AI for Humanity, 2018).
The Japanese Society for Artificial Intelligence Ethical Guidelines (Japanese Society for Artificial Intelligence, 2017).
Demiaux, V. How Can Humans Keep the Upper Hand? The Ethical Matters Raised by Algorithms and Artificial Intelligence (CNIL, 2017).
European ethical charter on the use of artificial intelligence in judicial systems and their environment. Council of Europe https://www.coe.int/en/web/cepej/cepej-european-ethical-charter-on-the-use-of-artificial-intelligence-ai-in-judicial-systems-and-their-environment (2019).
Ethics of AI in Radiology: European and North American Multisociety Statement (American College of Radiology, 2019).
Charlevoix Common Vision for the Future of Artificial Intelligence (Leaders of the G7, 2018).
DeepMind ethics and society principles. DeepMind https://deepmind.com/applied/deepmind-ethics-society/principles/ (2017).
Sony Group AI Ethics Guidelines (Sony, 2018).
Artificial Intelligence and Privacy (Datatilsynet, 2018).
White Paper: How to Prevent Discriminatory Outcomes in Machine Learning (WEF, 2018).
ITI AI Policy Principles (ITI, 2017).
The Ethics of Code: Developing AI for Business with Five Core Principles (Sage, 2017).
Commitments and principles. OP https://www.op.fi/op-financial-group/corporate-social-responsibility/commitments-and-principles (2019).
Tietoâs AI Ethics Guidelines (Tieto, 2018).
Introducing Unityâs Guiding Principles for Ethical AI. Unity Blog https://blogs.unity3d.com/2018/11/28/introducing-unitys-guiding-principles-for-ethical-ai/ (2018).
Discussion Paper: National Strategy for Artificial Intelligence (NITI Aayog, 2018).
AI in the UK: Ready, Willing and Able 183 (House of Lords, 2018).
Unified Ethical Frame for Big Data Analysis: IAF Big Data Ethics Initiative, Part A (The Information Accountability Foundation, 2015).
Fenech, M., Strukelj, N. & Buston, O. Ethical, Social, and Political Challenges of Artificial Intelligence in Health (Future Advocacy, 2019).
Responsible AI and robotics: an ethical framework. Accenture https://www.accenture.com/gb-en/company-responsible-ai-robotics (2019).
Artificial intelligence at Google: our principles. Google AI https://ai.google/principles/ (2019).
Microsoft AI principles. Microsoft https://www.microsoft.com/en-us/ai/our-approach-to-ai (2017).
Ãthique de la Recherche en Robotique (Allistene, 2014).
van Est, R. & Gerritsen, J. Human Rights in the Robot Age: Challenges Arising from the Use of Robotics, Artificial Intelligence, and Virtual and Augmented Reality (Rathenau Institute, 2017).
The declaration. Montreal Declaration https://www.montrealdeclaration-responsibleai.com/the-declaration (2017).
Mid- to Long-Term Master Plan in Preparation for the Intelligent Information Society: Managing the Fourth Industrial Revolution (Government of the Republic of Korea, 2017).
Crawford, K. et al. The AI Now Report: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term (AI Now Institute, 2016).
Report on Artificial Intelligence and Human Society: Unofficial Translation (Ministry of State for Science and Technology Policy, 2017).
Preparing for the future of Artificial Intelligence (NSTC, 2016).
Artificial Intelligence: The Public Policy Opportunity (Intel, 2017).
Machine Learning: The Power and Promise of Computers that Learn by Example (Royal Society, 2017).
Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, Version 1 (IEEE, 2019).
Report with Recommendations to the Commission on Civil Law Rules on Robotics (European Parliament, 2017).
Report of COMEST on Robotics Ethics (COMEST/UNESCO, 2017).
Campolo, A., Sanfilippo, M., Whittaker, M. & Crawford, K. AI Now 2017 Report (AI ow Institute, 2017).
Policy Recommendations on Augmented Intelligence in Health Care H-480.940 (AMA, 2018).
Avila, R., Brandusescu, A., Freuler, J. O. & Thakur, D. Artificial Intelligence: Open Questions about Gender Inclusion (World Wide Web Foundation, 2018).
Draft AI R&D Guidelines for International Discussions (The Conference toward AI Network Society, 2017).
The National Artificial Intelligence Research and Development Strategic Plan (NSTC, 2016).
Hoffmann, D. & Masucci, R. Intelâs AI Privacy Policy White Paper: Protecting Individualsâ Privacy and Data In The Artificial Intelligence World (Intel, 2018).
Tenets. The Partnership on AI https://www.partnershiponai.org/tenets/ (2016).
Ethics Policy. IIIM http://www.iiim.is/2015/08/ethics-policy/ (2015).
Latonero, M. Governing artificial intelligence: upholding human rights & dignity. Data & Society https://datasociety.net/output/governing-artificial-intelligence/ (2018).
OpenAI Charter. OpenAI https://blog.openai.com/openai-charter/ (2018).
LâIntelligenzia Artificiale al Servizio del Cittadino (AGID, 2018).
Gilburt, B. Women leading in AI: 10 principles of responsible AI. Towards Data Science https://towardsdatascience.com/women-leading-in-ai-10-principles-for-responsible-ai-8a167fc09b7d (2019).
Privacy and Freedom of Expression in the Age of Artificial Intelligence (Privacy International/Article 19, 2018).
Turilli, M. & Floridi, L. The ethics of information transparency. Ethics Inf. Technol. 11, 105â112 (2009).
Taddeo, M. & Floridi, L. How AI can be a force for good. Science 361, 751â752 (2018).
Rozin, P. & Royzman, E. B. Negativity bias, negativity dominance, and contagion. Person. Soc. Psychol. Rev. https://doi.org/10.1207/S15327957PSPR0504_2 (2016).
Bentley, P. J., Brundage, M., Häggström, O. & Metzinger, T. Should We Fear Artificial Intelligence? In-Depth Analysis (European Parliament, 2018).
Bryson, J. AI & global governance: no one should trust AI. United Nations University https://cpr.unu.edu/ai-global-governance-no-one-should-trust-ai.html (2018).
Winfield, A. F. T. & Marina, J. Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philos. Trans. R. Soc. A 376, 20180085 (2018).
Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at https://arxiv.org/abs/1906.02243 (2019).
Scheffran, J., Brzoska, M., Kominek, J., Link, P. M. & Schilling, J. Climate change and violent conflict. Science 336, 869â871 (2012).
AI for humanitarian action. Microsoft https://www.microsoft.com/en-us/ai/ai-for-humanitarian-action (2019).
Lancaster, C. Can artificial intelligence improve humanitarian responses? UNOPS https://www.unops.org/news-and-stories/insights/can-artificial-intelligence-improve-humanitarian-responses (2018).
Hagendorff, D. T. The ethics of AI ethics â an evaluation of guidelines. Preprint at https://arxiv.org/abs/1903.03425 (2019).
Whittlestone, J., Nyrup, R., Alexandrova, A. & Cave, S. The role and limits of principles in AI ethics: towards a focus on tensions. In Proc. 2019 AAAI/ACM Conference on AI, Ethics, and Society 195â200 (2019).
Mittelstadt, B. AI ethics â too principled to fail? Preprint at https://arxiv.org/abs/1906.06668 (2019).
The IEEE global initiative on ethics of autonomous and intelligent systems. IEEE Standards Association https://standards.ieee.org/industry-connections/ec/autonomous-systems.html (2019).
Acknowledgements
The authors would like to thank J. Sleigh for her help with creating the colour-coded map.
Author information
Authors and Affiliations
Contributions
E.V. conceived the research; A.J., M.I. and E.V. designed the research; A.J. performed the research; A.J. and M.I. analysed the data; A.J., M.I. and E.V. wrote the paper.
Corresponding author
Additional information
Publisherâs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1â3
Rights and permissions
About this article
Cite this article
Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat Mach Intell 1, 389â399 (2019). https://doi.org/10.1038/s42256-019-0088-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-019-0088-2
This article is cited by
-
Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Studies
Augmented Human Research (2025)
-
Neuroethics and AI ethics: a proposal for collaboration
BMC Neuroscience (2024)
-
Cliniciansâ roles and necessary levels of understanding in the use of artificial intelligence: A qualitative interview study with German medical students
BMC Medical Ethics (2024)
-
Integrating ethics in AI development: a qualitative study
BMC Medical Ethics (2024)
-
Navigating the ethical landscape of artificial intelligence in radiography: a cross-sectional study of radiographersâ perspectives
BMC Medical Ethics (2024)