Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

AI-driven research in pure mathematics and theoretical physics

Abstract

The past five years have seen a dramatic increase in the usage of artificial intelligence (AI) algorithms in pure mathematics and theoretical sciences. This might appear counter-intuitive as mathematical sciences require rigorous definitions, derivations and proofs, in contrast to the experimental sciences, which rely on the modelling of data with error bars. In this Perspective, we categorize the approaches to mathematical and theoretical discovery as ‘top-down’, ‘bottom-up’ and ‘meta-mathematics’. We review the progress over the past few years, comparing and contrasting both the advances and the shortcomings of each approach. We believe that although the theorist is not in danger of being replaced by AI systems in the near future, the combination of human expertise and AI algorithms will become an integral part of theoretical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sejnowski, T. J. The Deep Learning Revolution (MIT Press, 2018).

  2. Acemoglu, D., Autor, D., Hazell, J. & Restrepo, P. Artificial intelligence and jobs: evidence from online vacancies. J. Labor Econ. 40, S293–S340 (2022).

    Article  Google Scholar 

  3. Bruun, E. P. & Duka, A. Artificial intelligence, jobs and the future of work: racing with the machines. Basic Income Stud. 13, 20180018 (2018).

    Article  Google Scholar 

  4. Perret-Gallix, D. & Wójcik, W. New computing techniques in physics research. In Proc. 1st Int. Workshop on Software Engineering, Artificial Intelligence and Expert Systems in High-energy and Nuclear Physics (CNRS, 1990).

  5. He, Y.-H. Deep-learning the landscape. Phys. Lett. B 774, 564–568 (2017).

    Article  ADS  Google Scholar 

  6. Carifio, J., Halverson, J., Krioukov, D. & Nelson, B. D. Machine learning in the string landscape. J. High Energy Phys. 09, 157 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Krefl, D. & Seong, R.-K. Machine learning of Calabi–Yau volumes. Phys. Rev. D 96, 066014 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. Ruehle, F. Evolving neural networks with genetic algorithms to study the string landscape. J. High Energy Phys. 08, 038 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. Liu, J. Artificial neural network in cosmic landscape. J. High Energy Phys. 12, 149 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. He, Y.-H. The Calabi–Yau Landscape: From Geometry, to Physics, to Machine Learning (Springer Cham, 2018).

  11. Bull, K., He, Y.-H., Jejjala, V. & Mishra, C. Machine learning CICY threefolds. Phys. Lett. B 785, 65–72 (2018).

    Article  ADS  Google Scholar 

  12. Demirtas, M., Long, C., McAllister, L. & Stillman, M. The Kreuzer–Skarke axiverse. J. High Energy Phys. 04, 138 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  13. Mütter, A., Parr, E. & Vaudrevange, P. K. S. Deep learning in the heterotic orbifold landscape. Nucl. Phys. B 940, 113–129 (2019).

    Article  ADS  Google Scholar 

  14. Cole, A. & Shiu, G. Topological data analysis for the string landscape. J. High Energy Phys. 03, 054 (2019).

    Article  MathSciNet  Google Scholar 

  15. Otsuka, H. & Takemoto, K. Deep learning and k-means clustering in heterotic string vacua with line bundles. J. High Energy Phys. 05, 047 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  16. Ruehle, F. Data science applications to string theory. Phys. Rep. 839, 1–117 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  17. Larfors, M. & Schneider, R. Explore and exploit with heterotic line bundle models. Fortsch. Phys. 68, 2000034 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  18. Bies, M. et al. Machine learning and algebraic approaches towards complete matter spectra in 4d F-theory. J. High Energy Phys. 01, 196 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  19. Perez-Martinez, R., Ramos-Sanchez, S. & Vaudrevange, P. K. S. Landscape of promising nonsupersymmetric string models. Phys. Rev. D 104, 046026 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  20. Abel, S., Constantin, A., Harvey, T. R. & Lukas, A. String model building, reinforcement learning and genetic algorithms. In Nankai Symp. Mathematical Dialogues: In Celebration of S.S. Chern’s 110th Anniversary https://arxiv.org/abs/2111.07333 (2021).

  21. Hashimoto, K., Sugishita, S., Tanaka, A. & Tomiya, A. Deep learning and the AdS/CFT correspondence. Phys. Rev. D 98, 046019 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. de Mello Koch, E., de Mello Koch, R. & Cheng, L. Is deep learning a renormalization group flow? IEEE Access 8, 106487–106505 (2020).

    Article  Google Scholar 

  23. Erbin, H., Lahoche, V. & Samary, D. O. Non-perturbative renormalization for the neural network-QFT correspondence. Mach. Learn. Sci. Tech. 3, 015027 (2022).

    Article  Google Scholar 

  24. Jinno, R. Machine learning for bounce calculation. Preprint at https://arxiv.org/abs/1805.12153 (2018).

  25. Rudelius, T. Learning to inflate. JCAP 2019, 044 (2019).

    Article  MathSciNet  Google Scholar 

  26. Chen, H.-Y., He, Y.-H., Lal, S. & Majumder, S. Machine learning lie structures & applications to physics. Phys. Lett. B 817, 136297 (2021).

    Article  MathSciNet  Google Scholar 

  27. Kaspschak, B. & Meißner, U.-G. Neural network perturbation theory and its application to the Born series. Phys. Rev. Res. 3, 023223 (2021).

    Article  Google Scholar 

  28. Harvey, T. R. & Lukas, A. Quark mass models and reinforcement learning. J. High Energy Phys. 08, 161 (2021).

    Article  ADS  Google Scholar 

  29. Gupta, R., Bhattacharya, T. & Yoon, B. in Artificial Intelligence for Science (eds Choudhary, A., Fox, G. & Hey, T.) Ch. 26 (World Scientific, 2023).

  30. Lal, S., Majumder, S. & Sobko, E. The R-mAtrIx Net. Preprint at https://arxiv.org/abs/2304.07247 (2023).

  31. Gal, Y., Jejjala, V., Mayorga Peña, D. K. & Mishra, C. Baryons from mesons: a machine learning perspective. Int. J. Mod. Phys. A 37, 2250031 (2022).

    Article  ADS  Google Scholar 

  32. Krippendorf, S. & Syvaeri, M. Detecting symmetries with neural networks. Mach. Learn. Sci. Technol. 2, 015010 (2020).

    Article  Google Scholar 

  33. Udrescu, S.-M. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

    Article  ADS  Google Scholar 

  34. Cornelio, C. et al. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat. Commun. 14, 1777 (2023).

    Article  ADS  Google Scholar 

  35. Liu, Z. et al. Machine-learning nonconservative dynamics for new-physics detection. Phys. Rev. E 104, 055302 (2021).

    Article  ADS  Google Scholar 

  36. Lemos, P., Jeffrey, N., Cranmer, M., Ho, S. & Battaglia, P. Rediscovering orbital mechanics with machine learning. Mach. Learn. Sci. Technol. 4, 045002 (2023).

    Article  ADS  Google Scholar 

  37. Constantin, A. & Lukas, A. Formulae for line bundle cohomology on Calabi–Yau threefolds. Fortsch. Phys. 67, 1900084 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  38. Klaewer, D. & Schlechter, L. Machine learning line bundle cohomologies of hypersurfaces in toric varieties. Phys. Lett. B 789, 438–443 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  39. Altman, R., Carifio, J., Halverson, J. & Nelson, B. D. Estimating Calabi–Yau hypersurface and triangulation counts with equation learners. J. High Energy Phys. 03, 186 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  40. Grimm, T. W., Ruehle, F. & van de Heisteeg, D. Classifying Calabi–Yau threefolds using infinite distance limits. Commun. Math. Phys. 382, 239–275 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  41. Erbin, H. & Finotello, R. Machine learning for complete intersection Calabi–Yau manifolds: a methodological study. Phys. Rev. D 103, 126014 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  42. Berman, D. S., He, Y.-H. & Hirst, E. Machine learning Calabi–Yau hypersurfaces. Phys. Rev. D 105, 066002 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  43. Berglund, P., Campbell, B. & Jejjala, V. Machine learning Kreuzer–Skarke Calabi–Yau threefolds. Preprint at https://arxiv.org/abs/2112.09117 (2021).

  44. Coates, T., Kasprzyk, A. M. & Veneziale, S. Machine learning the dimension of a Fano variety. Nat. Commun. 14, 5526 (2023).

    Article  ADS  Google Scholar 

  45. He, Y.-H. & Kim, M. Learning algebraic structures: preliminary investigations. Preprint at https://arxiv.org/abs/1905.02263 (2019).

  46. Bao, J. et al. Quiver mutations, Seiberg duality and machine learning. Phys. Rev. D 102, 086013 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  47. Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021).

    Article  ADS  Google Scholar 

  48. Zaremba, W., Kurach, K. & Fergus, R. Learning to discover efficient mathematical identities. In Proc. 27th International Conference on Neural Information Processing Systems Vol. 1 (eds Ghahramani, Z. et al.) 1278–1286 (NeurIPS, 2014).

  49. England, M. in Mathematical Software – ICMS 2018 Vol. 10931 (eds Davenport, J. et al.) 165–174 (Springer, 2018).

  50. Lample, G. & Charton, F. Deep learning for symbolic mathematics. In Proc. Eighth International Conference on Learning Representations (ICLR, 2023).

  51. Weinan, E. Machine learning and computational mathematics. Commun. Comput. Phys. 28, 1639–1670 (2020).

    Article  MathSciNet  Google Scholar 

  52. Peifer, D., Stillman, M. & Halpern-Leistner, D. Learning selection strategies in Buchberger’s algorithm. In Proc. 37th International Conference on Machine Learning 7575–7585 (PMLR, 2020).

  53. Kamienny, P.-A., d’Ascoli, S., Lample, G. & Charton, F. End-to-end symbolic regression with transformers. Adv. Neural Inf. Process. Syst. 35, 10269–10281 (2022).

    Google Scholar 

  54. Dabelow, L. & Ueda, M. Symbolic equation solving via reinforcement learning. Preprint at https://arxiv.org/abs/2401.13447 (2024).

  55. Ashmore, A., He, Y.-H. & Ovrut, B. A. Machine learning Calabi–Yau metrics. Fortsch. Phys. 68, 2000068 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  56. Jejjala, V., Mayorga Pena, D. K. & Mishra, C. Neural network approximations for Calabi–Yau metrics. J. High Energy Phys. 08, 105 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  57. Larfors, M., Lukas, A., Ruehle, F. & Schneider, R. Numerical metrics for complete intersection and Kreuzer–Skarke Calabi–Yau manifolds. Mach. Learn. Sci. Technol. 3, 035014 (2022).

    Article  Google Scholar 

  58. Alessandretti, L., Baronchelli, A. & He, Y.-H. Machine learning meets number theory: the data science of Birch–Swinnerton-Dyer. Preprint at https://arxiv.org/abs/1911.02008 (2019).

  59. He, Y.-H., Lee, K.-H. & Oliver, T. Machine-learning the Sato–Tate conjecture. Preprint at https://arxiv.org/abs/2010.01213 (2020).

  60. Abel, S. A. & Nutricati, L. A. Ising machines for diophantine problems in physics. Fortsch. Phys. 70, 2200114 (2022).

    Article  MathSciNet  Google Scholar 

  61. Charton, F. Learning the greatest common divisor: explaining transformer predictions. Preprint at https://arxiv.org/abs/2308.15594# (2024).

  62. He, Y.-H. & Yau, S.-T. Graph Laplacians, Riemannian manifolds and their machine-learning. Preprint at https://arxiv.org/abs/2006.16619 (2020).

  63. Bao, J. et al. Hilbert series, machine learning, and applications to physics. Phys. Lett. B 827, 136966 (2022).

    Article  MathSciNet  Google Scholar 

  64. Gukov, S., Halverson, J., Ruehle, F. & Sułkowski, P. Learning to unknot. Mach. Learn. Sci. Technol. 2, 025035 (2021).

    Article  Google Scholar 

  65. Craven, J., Jejjala, V. & Kar, A. Disentangling a deep learned volume formula. J. High Energy Phys. 06, 040 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  66. Cohen, T., Freytsis, M. & Ostdiek, B. (Machine) learning to do more with less. J. High Energy Phys. 2018, 1–28 (2018).

    Article  Google Scholar 

  67. Hudson, M. No coding required: companies make it easier than ever for scientists to use artificial intelligence. Science 365, 416–417 (2019).

    ADS  Google Scholar 

  68. Xu, Y. et al. Artificial intelligence: a powerful paradigm for scientific research. Innov. J. 2, 100179 (2021).

    Google Scholar 

  69. Georgescu, I. How machines could teach physicists new scientific concepts. Nat. Rev. Phys. 4, 736–738 (2022).

    Article  Google Scholar 

  70. Thiyagalingam, J., Shankar, M., Fox, G. & Hey, T. Scientific machine learning benchmarks. Nat. Rev. Phys. 4, 413–420 (2022).

    Article  Google Scholar 

  71. Gukov, S., Halverson, J. & Ruehle, F. Rigor with machine learning from field theory to the Poincaré conjecture. Nat. Rev. Phys. 6, 310–319 (2024).

    Article  Google Scholar 

  72. Fink, T. Why mathematics is set to be revolutionized by AI. Nature 629, 505 (2024).

    Article  ADS  Google Scholar 

  73. Bengio, Y. & Malkin, N. Machine learning and information theory concepts towards an AI mathematician. Preprint at https://arxiv.org/abs/2403.04571 (2024).

  74. Satariano, A. & Specia, M. Global leaders warn AI poses risk of ‘catastrophic’ harm. The New York Times (1 November 2023).

  75. Russell, S. in Perspectives on Digital Humanism (eds Werthner, H. et al.) 19–24 (Springer, 2022).

  76. Lu, P., Qiu, L., Yu, W., Welleck, S. & Chang, K.-W. A survey of deep learning for mathematical reasoning. In Proc. 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (eds Rogers, A. et al.) 14605–14631 (Association for Computational Linguistics, 2023).

  77. Zhang, C. E., Collins, K. M., Weller, A. & Tenenbaum, J. B. AI for mathematics: a cognitive science perspective. Preprint at https://arxiv.org/abs/2310.13021 (2023).

  78. Williamson, G. Is deep learning a useful tool for the pure mathematician? Bull. Amer. Math. Soc. 61, 271–286 (2024).

    Article  MathSciNet  Google Scholar 

  79. He, Y.-H. (ed.) Machine Learning in Pure Mathematics and Theoretical Physics (World Scientific, 2023).

  80. Wilkins, A. How AI mathematicians might finally deliver human-level reasoning. New Scientist (10 April 2024).

  81. Greiner-Petter, A. et al. Why machines cannot learn mathematics, yet. Preprint at https://arxiv.org/abs/1905.08359 (2019).

  82. Dolotin, V. V., Morozov, A. Y. & Popolitov, A. V. Machine learning of the well-known things. Theor. Math. Phys. 214, 446–455 (2023).

    Article  MathSciNet  Google Scholar 

  83. Fajardo-Fontiveros, O. et al. Fundamental limits to learning closed-form mathematical models from data. Nat. Commun. https://doi.org/10.1038/s41467-023-36657-z (2023).

  84. Kolpakov, A. & Rocke, A. On the impossibility of discovering a formula for primes using AI. Preprint at https://arxiv.org/abs/2308.10817 (2023).

  85. He, Y.-H. Machine-learning mathematical structures. Preprint at https://arxiv.org/abs/2101.06317 (2021).

  86. Lindström, S. et al. (eds) Logicism, Intuitionism, and Formalism: What Has Become of Them? Vol. 341 (Springer, 2008).

  87. Zach, R. in Philosophy of Logic 411–447 (Elsevier, 2007).

  88. Russell, B. & Whitehead, A. N. Principia Mathematica 2nd edn, Vol. 1 (Cambridge Univ. Press, 1963).

  89. Ioannidis, J. P., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).

    Article  Google Scholar 

  90. McCarthy, J. in Daedalus Vol. 117, 297–311 (MIT Press, 1988).

  91. Brouwer, L. E. J. in From Frege to Gödel: A Source Book In Mathematical Logic 1879–1931 (ed. van Heijenoort, J.) 490–492 (Harvard Univ. Press, 1967).

  92. Gödel, K. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme I [German]. Monatshefte für mathematik und physik 38, 173–198 (1931).

    Article  MathSciNet  Google Scholar 

  93. Church, A. An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363 (1936).

    Article  MathSciNet  Google Scholar 

  94. Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. Lond. Math. Soc. s2-43, 544–546 (1938).

    Article  MathSciNet  Google Scholar 

  95. Newell, A. & Simon, H. The logic theory machine — a complex information processing system. IRE Trans. Inf. Theory 2, 61–79 (1956).

    Article  Google Scholar 

  96. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958).

    Article  Google Scholar 

  97. Roberts, S. AI is coming for mathematics, too. The New York Times (2 July 2023).

  98. Davenport, J. & Buzzard, K. The future of mathematics. In Proc. International Congress of Mathematicians (eds Sirakov, B. et al.) 1085–1110 (World Scientific, 2018).

  99. De Bruijn, N. G. in Studies in Logic and the Foundations of Mathematics Vol. 133, 73–100 (Elsevier, 1994).

  100. Nipkow, T. et al. (eds) Isabelle/HOL: A Proof Assistant for Higher-order Logic Vol. 2283 (Springer, 2002).

  101. Bertot, Y. & Castéran, P. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions (Springer, 2004).

  102. Wadler, P. Programming language foundations in Agda. In Formal Methods: Foundations and Applications (SBMF 2018) (eds Massoni, T. & Mousavi, M.) 56–73 (Springer, 2018).

  103. de Moura, L., Kong, S., Avigad, J., van Doorn, F. & von Raumer, J. in Automated Deduction-CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany, August 1–7, 2015, Proceedings (eds Felty, A. P. & Middeldorp, A.) 378–388 (Springer, 2015).

  104. Gowers, W. T., Green, B., Manners, F. & Tao, T. On a conjecture of Marton. Preprint at https://arxiv.org/abs/2311.05762 (2023).

  105. Ganesalingam, M. The Language of Mathematics (Springer, 2013).

  106. Wittgenstein, L. Tractatus logico-philosophicus (Kegan Paul, Trench, Trübner & Co., 1922).

  107. Turing, A. M. Computing machinery and intelligence. Mind LIX, 433–460 (1950).

  108. Biever, C. ChatGPT broke the turing test — the race is on for new ways to assess AI. Nature 619, 686–689 (2023).

    Article  ADS  Google Scholar 

  109. He, Y.-H., Jejjala, V. & Nelson, B. D. hep-th. Preprint at https://arxiv.org/abs/1807.00735 (2018).

  110. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. In Proc. 1st International Conference on Learning Representations (ICLR, 2013).

  111. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    Article  ADS  Google Scholar 

  112. Kim, J. T., Landajuela, M. & Petersen, B. K. Distilling Wikipedia mathematical knowledge into neural network models. In Proc. 1st Mathematical Reasoning in General Artificial Intelligence Workshop (ICLR, 2021).

  113. Hutson, M. AI learns to write computer code in ‘stunning’ advance. Science https://doi.org/10.1126/science.adg2088 (2022).

  114. Wang, Z., Xia, R. & Liu, P. Generative AI for math: Part i — MathPile: a billion-token-scale pretraining corpus for math. Preprint at https://arxiv.org/abs/2312.17120 (2023).

  115. Romera-Paredes, B. et al. Mathematical discoveries from program search with large language models. Nature 625, 468–475 (2024).

    Article  ADS  Google Scholar 

  116. Trinh, T. H., Wu, Y., Le, Q. V., He, H. & Luong, T. Solving olympiad geometry without human demonstrations. Nature 625, 476–482 (2024).

    Article  ADS  Google Scholar 

  117. Ahn, J. et al. Large language models for mathematical reasoning: progresses and challenges. Preprint at https://arxiv.org/abs/2402.00157 (2024).

  118. Frieder, S., Berner, J., Petersen, P. & Lukasiewicz, T. Large language models for mathematicians. Internationale Mathematische Nachrichten 254, 1–20 (2024).

    Google Scholar 

  119. Didolkar, A. et al. Metacognitive capabilities of LLMs: an exploration in mathematical problem solving. Preprint at https://arxiv.org/abs/2405.12205 (2024).

  120. Polu, S., Han, J. M. & Sutskever, I. Solving (some) formal math olympiad problems. OpenAI https://openai.com/index/formal-math/ (2022).

  121. Rodriguez, A., Azhar, F. & Spisak, J. Teaching AI advanced mathematical reasoning. Meta https://ai.meta.com/blog/ai-math-theorem-proving/ (2022).

  122. Otte, M. & Panza, M. (eds) Analysis and Synthesis in Mathematics: History and Philosophy Vol. 196 (Kluwer Academic Publishers, 1997).

  123. Lynch, P. Will mathematicians be replaced by computers? The Irish Times https://www.irishtimes.com/news/science/will-mathematicians-be-replaced-by-computers-1.4349668 (17 September 2020).

  124. Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974).

    Google Scholar 

  125. Arnol’d, V. I. On teaching mathematics. Uspekhi Mat. Nauk 53, 229–234 (1998).

    MathSciNet  Google Scholar 

  126. Carlson, J. A., Jaffe, A. & Wiles, A. (eds) The Millennium Prize Problems (American Mathematical Society, 2006).

  127. Hardy, G. H. A Mathematician’s Apology (Cambridge Univ. Press, 1992).

  128. Wu, C. W. Can machine learning identify interesting mathematics? An exploration using empirically observed laws. Preprint at https://arxiv.org/abs/1805.07431 (2018).

  129. Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. Scientific intuition inspired by machine learning-generated hypotheses. Mach. Learn. Sci. Technol. 2, 025027 (2021).

    Article  Google Scholar 

  130. Raayoni, G. et al. Generating conjectures on fundamental constants with the Ramanujan machine. Nature 590, 67–73 (2021).

    Article  Google Scholar 

  131. Mishra, C., Moulik, S. R. & Sarkar, R. Mathematical conjecture generation using machine intelligence. Preprint at https://arxiv.org/abs/2306.07277 (2023).

  132. Bauer, A., Petković, M. & Todorovski, L. MLFMF: data sets for machine learning for mathematical formalization. In Proc. 37th International Conference on Neural Information Processing Systems 50730–50741 (Association for Computing Machinery, 2024).

  133. Davila, R. Advancements in research mathematics through AI: a framework for conjecturing. Preprint at https://arxiv.org/abs/2306.12917 (2023).

  134. Birch, B. Reminiscences from 1958–62. Isaac Newton Institute for Mathematical Sciences https://www.sms.cam.ac.uk/media/3530787 (2021).

  135. He, Y.-H. & Burtsev, M. Can AI make genuine theoretical discoveries? Nature 625, 241–241 (2024).

    Article  ADS  Google Scholar 

  136. Schenck, H. Computational Algebraic Geometry Vol. 58 (Cambridge Univ. Press, 2003).

  137. Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).

    Article  ADS  Google Scholar 

  138. Kauers, M. & Moosbauer, J. The FBHHRBNRSSSHK-algorithm for multiplication in \({{\mathbb{Z}}}_{2}^{5\times 5}\) is still not the end of the story. Preprint at https://arxiv.org/abs/2210.04045 (2022).

  139. He, Y.-H., Lee, K.-H., Oliver, T. & Pozdnyakov, A. Murmurations of elliptic curves. Preprint at https://arxiv.org/abs/2204.10140 (2022).

  140. Gorenstein, D. Finite Simple Groups: An Introduction to Their Classification (Springer, 2013).

  141. Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).

  142. Wolfram, S. ChatGPT gets its ‘Wolfram superpowers’! Stephen Wolfram Writings https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/ (2023).

  143. Ellenberg, J. Will AI replace mathematicians? Big Think https://bigthink.com/the-future/artificial-intelligence-replace-mathematicians/ (2021).

  144. Qin, H. & Ye, Y. Algorithms of the Möbius function by random forests and neural networks. J. Big Data 11, 31 (2024).

    Article  Google Scholar 

  145. Mossinghoff, M. J. & Trudgian, T. S. in Exploring the Riemann Zeta Function: 190 Years from Riemann’s Birth (eds Montgomery, H. et al.) 201–221 (Springer, 2017).

Download references

Acknowledgements

The author is most grateful to A. Bhattacharya, A. Kosyak and M. Duncan for many valuable comments on the draft. The author thanks many collaborators over the past few years on AI-assisted mathematics, for the great fun and friendship: D. Aggarwal, L. Alessandretti, G. Arias-Tamargo, A. Ashmore, J. Bao, A. Baronchelli, P. Berglund, D. Berman, K. Bull, L. Calmon, H. Chen, S. Chen, A. Constantin, P.-P. Dechant, R. Deen, S. Garoufalidis, E. Heyes, E. Hirst, J. Hofscheier, J. Ipiña, V. Jejjala, A. Kasprzyk, M. Kim, S. Lal, K.-H. Lee, S.-J. Lee, J. Li, A. Lukas, S. Majumder, C. Mishra, G. Musiker, B. Nelson, A. Nestor, T. Oliver, B. Ovrut, T. Peterken, S. Pietromonaco, A. Pozdnyakov, D. Riabchenko, D. Rodriguez-Gomez, H. Sá Earp, M. Sharnoff, T. Silva, E. Sultanow, Y. Xiao, S.-T. Yau and Z. Zaz. The research is funded in part by STFC grant ST/J00037X/2 and the Leverhulme Trust for a project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Hui He  (何楊輝).

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Rak-Kyeong Seong, Adam Zsolt Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YH. AI-driven research in pure mathematics and theoretical physics. Nat Rev Phys 6, 546–553 (2024). https://doi.org/10.1038/s42254-024-00740-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00740-1

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics