Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Next-generation AI for connectomics

New approaches in artificial intelligence (AI), such as foundation models and synthetic data, are having a substantial impact on many areas of applied computer science. Here we discuss the potential to apply these developments to the computational challenges associated with producing synapse-resolution maps of nervous systems, an area in which major ambitions are currently bottlenecked by AI performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Januszewski, M. et al. Nat. Methods 15, 605–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Preprint at https://doi.org/10.48550/arXiv.1706.00120 (2017).

  3. Sheridan, A. et al. Nat. Methods 20, 295–303 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Shapson-Coe, A. et al. Science 384, eadk4858 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Bommasani, R. et al. Preprint at https://doi.org/10.48550/arXiv.2108.07258arXiv (2015).

  6. Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conference on Computer Vision, 4015–4026 (IEEE, 2023).

  7. Archit, A. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.08.21.554208 (2023).

  8. Lee, H. H. et al. Preprint at https://doi.org/10.48550/arXiv.2401.07654 (2024).

  9. Wu, J. et al. Preprint at https://doi.org/10.48550/arXiv.2304.12620 (2023).

  10. Trinh, T. H., Wu, Y., Le, Q. V., He, H. & Luong, T. Nature 625, 476–482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, Z. et al. IEEE Trans. Intell. Veh. 9, 1847–1864 (2023).

    Article  Google Scholar 

  12. Ghorbani, A., Natarajan, V., Coz, D. & Liu, Y. DermGAN: synthetic generation of clinical skin images with pathology. In Proc. Machine Learning for Health NeurIPS Workshop (eds. Dalca, A. V. et al.) 155–170 (PMLR, 2019).

  13. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. in ICML’20: Proc. International Conf. on Machine Learning (eds Daumé, H. & Singh, A.) 1597–1607 (PMLR, 2020).

  14. Dorkenwald, S. et al. Nat. Methods 20, 2011–2020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reid, M. et al. Preprint at https://doi.org/10.48550/arXiv.2403.05530 (2024).

  16. Hinton, G., Vinyals, O. & Dean, J. Preprint at https://doi.org/10.48550/arXiv.1503.02531 (2015).

Download references

Acknowledgements

M.J. and V.J. are supported by Google Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michał Januszewski or Viren Jain.

Ethics declarations

Competing interests

The authors are employed by Google, LLC, which sells cloud computing and generative AI services.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Januszewski, M., Jain, V. Next-generation AI for connectomics. Nat Methods 21, 1398–1399 (2024). https://doi.org/10.1038/s41592-024-02336-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02336-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing