Skip to main content

Advertisement

Log in

Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In addition to its established thermoregulatory and cardiovascular effects, heat stress provokes alterations in macronutrient metabolism, gastrointestinal integrity, and appetite. Inadequate energy, carbohydrate, and protein intake have been implicated in reduced exercise and heat tolerance. Classic exercise heat acclimation (HA) protocols employ low-to-moderate–intensity exercise for 5–14 days, while recent studies have evolved the practice by implementing high-intensity and task-specific exercise during HA, which potentially results in impaired post-HA physical performance despite adequate heat adaptations. While there is robust literature demonstrating the performance benefit of various nutritional interventions during intensive training and competition, most HA studies implement few nutritional controls. This review summarizes the relationships between heat stress, HA, and intense exercise in connection with substrate metabolism, gastrointestinal function, and the potential consequences of reduced energy availability. We discuss the potential influence of macronutrient manipulations on HA study outcomes and suggest best practices to implement nutritional controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Febbraio M, Snow R, Hargreaves M, Stathis C, Martin I, Carey M. Muscle metabolism during exercise and heat stress in trained men: Effect of acclimation. J Appl Physiol. 1985;1994(76):589–97.

    Google Scholar 

  2. Febbraio MA. Alterations in energy metabolism during exercise and heat stress. Sports Med. 2001;31:47–59.

    Article  PubMed  CAS  Google Scholar 

  3. Hargreaves M, Angus D, Howlett K, Conus NM, Febbraio M. Effect of heat stress on glucose kinetics during exercise. J Appl Physiol. 1985;1996(81):1594–7.

    Google Scholar 

  4. Rosbrook P, Sweet D, Qiao J, Looney DP, Margolis LM, Hostler D, et al. Heat stress increases carbohydrate oxidation rates and oxygen uptake during prolonged load carriage exercise. Temperature. 2024;11:170–81.

    Article  Google Scholar 

  5. Periard JD, Eijsvogels TM, Daanen HA. Exercise under heat stress: thermoregulation, hydration, performance implications and mitigation strategies. Physiol Rev. 2021;101:1873–979.

    Article  PubMed  CAS  Google Scholar 

  6. Benjamin CL, Sekiguchi Y, Fry LA, Casa DJ. Performance changes following heat acclimation and the factors that influence these changes: meta-analysis and meta-regression. Front Physiol. 2019;10:1448.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109:1140–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pryor JL, Johnson EC, Roberts WO, Pryor RR. Application of evidence-based recommendations for heat acclimation: Individual and team sport perspectives. Temperature. 2019;6:37–49.

    Article  Google Scholar 

  9. Schmit C, Duffield R, Hausswirth C, Brisswalter J, Le Meur Y. Optimizing heat acclimation for endurance athletes: high- versus low-intensity training. Int J Sports Physiol Perform. 2018;13:816–23.

    Article  PubMed  Google Scholar 

  10. Reeve T, Gordon R, Laursen PB, Lee JKW, Tyler CJ. Impairment of cycling capacity in the heat in well-trained endurance athletes after high-intensity short-term heat acclimation. Int J Sports Physiol Perform. 2019;14:1058–65.

    Article  PubMed  Google Scholar 

  11. Waldron M, Fowler R, Heffernan S, Tallent J, Kilduff L, Jeffries O. Effects of heat acclimation and acclimatisation on maximal aerobic capacity compared to exercise alone in both thermoneutral and hot environments: a meta-analysis and meta-regression. Sports Med Auckl NZ. 2021;51:1509–25.

    Article  Google Scholar 

  12. King DS, Costill DL, Fink WJ, Hargreaves M, Fielding RA. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol. 1985;59:1350–4.

    Article  PubMed  CAS  Google Scholar 

  13. McCubbin AJ, Allanson BA, Odgers JNC, Cort MM, Costa RJS, Cox GR, et al. Sports dietitians Australia position statement: nutrition for exercise in hot environments. Int J Sport Nutr Exerc Metab. 2020;30:83–98.

    Article  PubMed  CAS  Google Scholar 

  14. Houmard JA, Costill DL, Davis JA, Mitchell JB, Pascoe DD, Robergs RA. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc. 1990;22:615–20.

    Article  PubMed  CAS  Google Scholar 

  15. McIntyre RD, Zurawlew MJ, Mee JA, Walsh NP, Oliver SJ. A comparison of medium-term heat acclimation by post-exercise hot water immersion or exercise in the heat: adaptations, overreaching, and thyroid hormones. Am J Physiol Regul Integr Comp Physiol. 2022;323:R601–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Racinais S, Périard JD, Piscione J, Bourdon PC, Cocking S, Ihsan M, et al. Intensified training supersedes the impact of heat and/or altitude for increasing performance in Elite Rugby Union Players. Int J Sports Physiol Perform. 2021;16:1416–23.

    Article  PubMed  Google Scholar 

  17. Costill DL, Bowers R, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol. 1971;31:834–8.

    Article  PubMed  CAS  Google Scholar 

  18. Areta JL, Taylor HL, Koehler K. Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur J Appl Physiol. 2021;121:1–21.

    Article  PubMed  Google Scholar 

  19. Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(Suppl 1):S7-15.

    Article  PubMed  Google Scholar 

  20. Mountjoy M, Sundgot-Borgen J, Burke L, Ackerman KE, Blauwet C, Constantini N, et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int J Sport Nutr Exerc Metab. 2018;28:316–31.

    Article  PubMed  Google Scholar 

  21. Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28:403–11.

    Article  PubMed  CAS  Google Scholar 

  22. Tornberg ÅB, Melin A, Koivula FM, Johansson A, Skouby S, Faber J, et al. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med Sci Sports Exerc. 2017;49:2478–85.

    Article  PubMed  Google Scholar 

  23. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, et al. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr. 2022;19:267–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Arent SM, Cintineo HP, McFadden BA, Chandler AJ, Arent MA. Nutrient timing: a garage door of opportunity? Nutrients. 2020;12:E1948.

    Article  Google Scholar 

  26. Abbiss CR, Peiffer JJ, Peake JM, Nosaka K, Suzuki K, Martin DT, et al. Effect of carbohydrate ingestion and ambient temperature on muscle fatigue development in endurance-trained male cyclists. J Appl Physiol. 2008;104:1021–8.

    Article  PubMed  Google Scholar 

  27. Achten J, Halson SL, Moseley L, Rayson MP, Casey A, Jeukendrup AE. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J Appl Physiol Bethesda Md. 1985;2004(96):1331–40.

    Google Scholar 

  28. Flouris AD, Dinas PC, Ioannou LG, Nybo L, Havenith G, Kenny GP, et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Health. 2018;2:e521–31.

    Article  PubMed  Google Scholar 

  29. Armstrong CG, Kenney WL. Effects of age and acclimation on responses to passive heat exposure. J Appl Physiol. 1993;75:2162–7.

    Article  PubMed  CAS  Google Scholar 

  30. Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84:1731–9.

    Article  PubMed  CAS  Google Scholar 

  31. Cramer MN, Jay O. Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin. 2016;196:3–13.

    Article  Google Scholar 

  32. Foster J, Hodder SG, Lloyd AB, Havenith G. Individual responses to heat stress: implications for hyperthermia and physical work capacity. Front Physiol. 2020;11: 541483.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kenney WL. A review of comparative responses of men and women to heat stress. Environ Res. 1985;37:1–11.

    Article  PubMed  CAS  Google Scholar 

  34. Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol. 2001;91:2055–63.

    Article  PubMed  CAS  Google Scholar 

  35. Starkie RL, Hargreaves M, Lambert DL, Proietto J, Febbraio MA. Effect of temperature on muscle metabolism during submaximal exercise in humans. Exp Physiol. 1999;84:775–84.

    Article  PubMed  CAS  Google Scholar 

  36. Cady EB, Jones DA, Lynn J, Newham DJ. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol. 1989;418:311–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jentjens RLPG, Wagenmakers AJM, Jeukendrup AE. Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. J Appl Physiol. 1985;2002(92):1562–72.

    Google Scholar 

  38. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61:968S-979S.

    Article  PubMed  CAS  Google Scholar 

  39. Maunder E, Plews DJ, Merien F, Kilding AE. Exercise intensity regulates the effect of heat stress on substrate oxidation rates during exercise. Eur J Sport Sci. 2020;20:935–43.

    Article  PubMed  CAS  Google Scholar 

  40. Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol. 1985;2010(109):1989–95.

    Google Scholar 

  41. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.

    PubMed  Google Scholar 

  42. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586:45–53.

    Article  PubMed  Google Scholar 

  43. Trangmar SJ, González-Alonso J. New insights into the impact of dehydration on blood flow and metabolism during exercise. Exerc Sport Sci Rev. 2017;45:146–53.

    Article  PubMed  Google Scholar 

  44. Logan-Sprenger HM, Heigenhauser GJF, Jones GL, Spriet LL. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males. Physiol Rep. 2015;3: e12483.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khong TK, Selvanayagam VS, Sidhu SK, Yusof A. Role of carbohydrate in central fatigue: a systematic review. Scand J Med Sci Sports. 2017;27:376–84.

    Article  PubMed  CAS  Google Scholar 

  46. Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT, Bartoli WP. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol. 1992;65:513–9.

    Article  CAS  Google Scholar 

  47. Robson P. Elucidating the unexplained underperformance syndrome in endurance athletes : the interleukin-6 hypothesis. Sports Med Auckl NZ. 2003;33:771–81.

    Article  Google Scholar 

  48. Pedersen BK. Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exerc. 2012;44:392–6.

    Article  PubMed  CAS  Google Scholar 

  49. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kistner TM, Pedersen BK, Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab. 2022;4:170–9.

    Article  PubMed  CAS  Google Scholar 

  51. Robson-Ansley PJ, de Milander L, Collins M, Noakes TD. Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can J Appl Physiol Rev Can Physiol Appl. 2004;29:411–8.

    Article  CAS  Google Scholar 

  52. Willmott AGB, Hayes M, James CA, Dekerle J, Gibson OR, Maxwell NS. Once- and twice-daily heat acclimation confer similar heat adaptations, inflammatory responses and exercise tolerance improvements. Physiol Rep. 2018;6: e13936.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Costello JT, Rendell RA, Furber M, Massey HC, Tipton MJ, Young JS, et al. Effects of acute or chronic heat exposure, exercise and dehydration on plasma cortisol, IL-6 and CRP levels in trained males. Cytokine. 2018;110:277–83.

    Article  PubMed  CAS  Google Scholar 

  54. Guy JH, Pyne DB, Deakin GB, Miller CM, Edwards AM. Acclimation training improves endurance cycling performance in the heat without inducing endotoxemia. Front Physiol. 2016;7:318.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nybo L, Møller K, Volianitis S, Nielsen B, Secher NH. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol Bethesda Md. 1985;2002(93):58–64.

    Google Scholar 

  56. Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol Bethesda Md. 1985;2001(91):1055–60.

    Google Scholar 

  57. Alkemade P, Gerrett N, Eijsvogels TMH, Daanen HAM. Individual characteristics associated with the magnitude of heat acclimation adaptations. Eur J Appl Physiol. 2021;121:1593–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Daanen H, Jonkman A, Layden J, Linnane D, Weller A. Optimising the acquisition and retention of heat acclimation. Int J Sports Med. 2011;32:822–8.

    Article  PubMed  CAS  Google Scholar 

  59. Pryor JL, Pryor RR, Vandermark LW, Adams EL, VanScoy RM, Casa DJ, et al. Intermittent exercise-heat exposures and intense physical activity sustain heat acclimation adaptations. J Sci Med Sport. 2019;22:117–22.

    Article  PubMed  Google Scholar 

  60. Armstrong LE, Francesconi RP, Kraemer WJ, Leva N, De Luca JP, Hubbard RW. Plasma cortisol, renin, and aldosterone during an intense heat acclimation program. Int J Sports Med. 1989;10:38–42.

    Article  PubMed  CAS  Google Scholar 

  61. Buono MJ, Martha SL, Heaney JH. Peripheral sweat gland function is improved with humid heat acclimation. J Therm Biol. 2009;34:127–30.

    Article  Google Scholar 

  62. Horowitz M. Heat acclimation, epigenetics, and cytoprotection memory. Compr Physiol. 2014;4:199–230.

    Article  PubMed  Google Scholar 

  63. Young A, Sawka M, Levine L, Cadarette B, Pandolf K. Skeletal muscle metabolism during exercise is influenced by heat acclimation. J Appl Physiol. 1985;1986(59):1929–35.

    Article  Google Scholar 

  64. Kirwan JP, Costill DL, Kuipers H, Burrell MJ, Fink WJ, Kovaleski JE, et al. Substrate utilization in leg muscle of men after heat acclimation. J Appl Physiol Bethesda Md. 1985;1987(63):31–5.

    Google Scholar 

  65. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol. 1995;78:288–92.

    Article  PubMed  CAS  Google Scholar 

  66. Gupta A, Chauhan NR, Chowdhury D, Singh A, Meena RC, Chakrabarti A, et al. Heat stress modulated gastrointestinal barrier dysfunction: role of tight junctions and heat shock proteins. Scand J Gastroenterol. 2017;52:1315–9.

    Article  PubMed  CAS  Google Scholar 

  67. King MA, Rollo I, Baker LB. Nutritional considerations to counteract gastrointestinal permeability during exertional heat stress. J Appl Physiol. 2021;130:1754–65.

    Article  PubMed  Google Scholar 

  68. Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, et al. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J Anim Sci. 2013;91:5183–93.

    Article  PubMed  CAS  Google Scholar 

  69. van Nieuwenhoven MA, Brouns F, Brummer RJ. The effect of physical exercise on parameters of gastrointestinal function. Neurogastroenterol Motil. 1999;11:431–9.

    Article  PubMed  Google Scholar 

  70. Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The gastrointestinal exertional heat stroke paradigm: pathophysiology, assessment, severity, aetiology and nutritional countermeasures. Nutrients. 2020;12:537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Davison G, Marchbank T, March DS, Thatcher R, Playford RJ. Zinc carnosine works with bovine colostrum in truncating heavy exercise-induced increase in gut permeability in healthy volunteers. Am J Clin Nutr. 2016;104:526–36.

    Article  PubMed  CAS  Google Scholar 

  72. Pugh JN, Impey SG, Doran DA, Fleming SC, Morton JP, Close GL. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2017;42:941–7.

    Article  CAS  Google Scholar 

  73. Snipe RMJ, Khoo A, Kitic CM, Gibson PR, Costa RJS. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int J Sports Med. 2018;39:255–63.

    Article  CAS  Google Scholar 

  74. Costa RJS, Camões-Costa V, Snipe RMJ, Dixon D, Russo I, Huschtscha Z. Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J Appl Physiol. 2019;126:1281–91.

    Article  PubMed  CAS  Google Scholar 

  75. Jonvik KL, Lenaerts K, Smeets JSJ, Kolkman JJ, Loon VAN LJC, Verdijk LB. Sucrose but not nitrate ingestion reduces strenuous cycling-induced intestinal injury. Med Sci Sports Exerc. 2019;51:436–44.

    Article  PubMed  CAS  Google Scholar 

  76. Barberio MD, Elmer DJ, Laird RH, Lee KA, Gladden B, Pascoe DD. Systemic LPS and inflammatory response during consecutive days of exercise in heat. Int J Sports Med. 2015;36:262–70.

    PubMed  CAS  Google Scholar 

  77. Moss JN, Bayne FM, Castelli F, Naughton MR, Reeve TC, Trangmar SJ, et al. Short-term isothermic heat acclimation elicits beneficial adaptations but medium-term elicits a more complete adaptation. Eur J Appl Physiol. 2020;120:243–54.

    Article  PubMed  CAS  Google Scholar 

  78. Pugh JN, Sage S, Hutson M, Doran DA, Fleming SC, Highton J, et al. Glutamine supplementation reduces markers of intestinal permeability during running in the heat in a dose-dependent manner. Eur J Appl Physiol. 2017;117:2569–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, et al. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol. 2014;116:183–91.

    Article  PubMed  CAS  Google Scholar 

  80. Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Delves SK, et al. Acute L-glutamine supplementation does not improve gastrointestinal permeability, injury or microbial translocation in response to exhaustive high intensity exertional-heat stress. Eur J Sport Sci. 2022;22:1865–76.

    Article  PubMed  Google Scholar 

  81. Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Delves SK, et al. No protective benefits of low dose acute L-glutamine supplementation on small intestinal permeability, epithelial injury and bacterial translocation biomarkers in response to subclinical exertional-heat stress: a randomized cross-over trial. Temperature. 2022;9:196–210.

    Article  Google Scholar 

  82. Herman CP. Effects of heat on appetite. In: Marriott BM, editor. Nutritional needs in hot environments: applications for military personnel in field operations. Washington, DC: National Academies Press; 1993. p. 187–214.

    Google Scholar 

  83. He X, Lu Z, Ma B, Zhang L, Li J, Jiang Y, et al. Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers. J Therm Biol. 2019;81:110–7.

    Article  PubMed  CAS  Google Scholar 

  84. Hunschede S, Schwartz A, Kubant R, Thomas SG, Anderson GH. The role of IL-6 in exercise-induced anorexia in normal-weight boys. Appl Physiol Nutr Metab. 2018;43:979–87.

    Article  PubMed  CAS  Google Scholar 

  85. McGlynn ML, Shute RJ, Slivka DR. The influence of heat on appetite-regulating adipokines. Curr Res Diabetes Obes J. 2020;12:128–32.

    Google Scholar 

  86. Bilski J, Mazur-Bialy AI, Surmiak M, Hubalewska-Mazgaj M, Pokorski J, Nitecki J, et al. Effect of acute sprint exercise on myokines and food intake hormones in young healthy men. Int J Mol Sci. 2020;21:8848.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Koehler K, Achtzehn S, Braun H, Mester J, Schaenzer W. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl Physiol Nutr Metab. 2013;38:725–33.

    Article  PubMed  CAS  Google Scholar 

  88. Burrows TL, Ho YY, Rollo ME, Collins CE. Validity of dietary assessment methods when compared to the method of doubly labeled water: a systematic review in adults. Front Endocrinol [Internet]. 2019. https://doi.org/10.3389/fendo.2019.00850. Accessed 17 July 2024.

    Article  Google Scholar 

  89. McGuire A, Warrington G, Doyle L. Low energy availability in male athletes: a systematic review of incidence, associations, and effects. Transl SPORTS Med. 2020;3:173–87.

    Article  Google Scholar 

  90. Murphy C, Koehler K. Caloric restriction induces anabolic resistance to resistance exercise. Eur J Appl Physiol. 2020;120:1155–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kojima C, Ishibashi A, Tanabe Y, Iwayama K, Kamei A, Takahashi H, et al. Muscle glycogen content during endurance training under low energy availability. Med Sci Sports Exerc. 2020;52:187–95.

    Article  PubMed  CAS  Google Scholar 

  92. Areta JL, Burke LM, Camera DM, West DWD, Crawshay S, Moore DR, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306:E989-997.

    Article  PubMed  CAS  Google Scholar 

  93. Kuikman MA, Coates AM, Burr JF. Markers of low energy availability in overreached athletes: a systematic review and meta-analysis. Sports Med. 2022;52:2925–41.

    Article  PubMed  Google Scholar 

  94. Loucks DAB. Low energy availability in the marathon and other endurance sports. Sports Med. 2007;37:348–52.

    Article  PubMed  Google Scholar 

  95. Morris JG, Nevill ME, Boobis LH, Macdonald IA, Williams C. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C. Int J Sports Med. 2005;26:805–14.

    Article  PubMed  CAS  Google Scholar 

  96. Neufer PD, Young AJ, Sawka MN. Gastric emptying during exercise: effects of heat stress and hypohydration. Eur J Appl Physiol. 1989;58:433–9.

    Article  CAS  Google Scholar 

  97. Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Baumgard LH, Rhoads RP Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci. 2013;1:311–37.

    Article  PubMed  Google Scholar 

  99. Jentjens RLPG, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 1985;2006(100):807–16.

    Google Scholar 

  100. Carter J, Jeukendrup AE, Mundel T, Jones DA. Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflüg Arch. 2003;446:211–9.

    Article  CAS  Google Scholar 

  101. Dolny DG, Lemon PW. Effect of ambient temperature on protein breakdown during prolonged exercise. J Appl Physiol Bethesda Md. 1985;1988(64):550–5.

    Google Scholar 

  102. Febbraio M, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77:2827–31.

    Article  PubMed  CAS  Google Scholar 

  103. Goto K, Oda H, Morioka S, Naito T, Akema T, Kato H, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. Jpn J Aerosp Env Med. 2007;44:13–8.

    Google Scholar 

  104. Snow RJ, Febbraio MA, Carey MF, Hargreaves M. Heat stress increases ammonia accumulation during exercise in humans. Exp Physiol. 1993;78:847–50.

    Article  PubMed  CAS  Google Scholar 

  105. Wheelock JB, Rhoads RP, Vanbaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010;93:644–55.

    Article  PubMed  CAS  Google Scholar 

  106. Yunianto VD, Hayashi K, Kaneda S, Ohtsuka A, Tomita Y. Effect of environmental temperature on muscle protein turnover and heat production in tube-fed broiler chickens. Br J Nutr. 1997;77:897–909.

    Article  PubMed  CAS  Google Scholar 

  107. Li Z, McKenna ZJ, Kuennen MR, Magalhães de F C, Mermier CM, Amorim FT. The Potential Role of Exercise-Induced Muscle Damage in Exertional Heat Stroke. Sports Med. 2021;51:863–72.

    Article  PubMed  Google Scholar 

  108. Ogawa T, Asayama M, Miyagawa T. Effects of sweat gland training by repeated local heating. Jpn J Physiol. 1982;32:971–81.

    Article  PubMed  CAS  Google Scholar 

  109. Patterson MJ, Stocks JM, Taylor NAS. Sustained and generalized extracellular fluid expansion following heat acclimation. J Physiol. 2004;559:327–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.

    PubMed  Google Scholar 

  111. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. 2016;116:501–28.

    Article  PubMed  Google Scholar 

  112. McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, et al. National Athletic Trainers’ Association position statement: fluid replacement for the physically active. J Athl Train. 2017;52:877–95.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15:1–57.

    Article  Google Scholar 

  114. Headquarters, Department of the Army. Technical Bulletin, Medical (TB MED) 507: Heat Stress Control and Heat Casualty Management [Internet]. United States Army; 2022 [cited 2022 Jun 3]. Available from: https://armypubs.army.mil/epubs/DR_pubs/DR_a/ARN35159-TB_MED_507-000-WEB-1.pdf.

  115. Pasiakos SM. Nutritional requirements for sustaining health and performance during exposure to extreme environments. Annu Rev Nutr. 2020;40:221–45.

    Article  PubMed  CAS  Google Scholar 

  116. Armstrong LE, Hubbard RW, Askew EW, De Luca JP, O’Brien C, Pasqualicchio A, et al. Responses to moderate and low sodium diets during exercise-heat acclimation. Int J Sport Nutr. 1993;3:207–21.

    Article  PubMed  CAS  Google Scholar 

  117. Lutz LJ, Gaffney-Stomberg E, Karl JP, Hughes JM, Guerriere KI, McClung JP. Dietary intake in relation to military dietary reference values during army basic combat training; a multi-center, cross-sectional study. Mil Med. 2019;184:e223–30.

    Article  PubMed  Google Scholar 

  118. U.S. Department of Defense. Natick PAM 30–25: Operational Rations of the Department of Defense, 9th Ed. [Internet]. Combat Feeding Directorate; 2012. Available from: https://api.army.mil/e2/c/downloads/306070.pdf. Accessed 17 July 2024.

  119. Margolis LM, Crombie AP, McClung HL, McGraw SM, Rood JC, Montain SJ, et al. Energy requirements of US Army Special Operation Forces during military training. Nutrients. 2014;6:1945–55.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Steele SR, Mullenix PS, Martin MJ, Place RJ. The effect of combat rations on bowel habits in a combat environment. Am J Surg. 2005;189:518–21 (discussion 521).

    Article  PubMed  Google Scholar 

  121. Karl JP, Armstrong NJ, McClung HL, Player RA, Rood JC, Racicot K, et al. A diet of U.S. military food rations alters gut microbiota composition and does not increase intestinal permeability. J Nutr Biochem. 2019;72:108217.

    Article  PubMed  CAS  Google Scholar 

  122. Institute of Medicine (US) Committee on Military Nutrition Research. Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations [Internet]. Marriott BM, editor. Washington (DC): National Academies Press (US); 1993 [cited 2024 Jul 19]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK236233/.

  123. Pitsiladis YP, Maughan RJ. The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol. 1999;517:919–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ihsan M, Périard JD, Racinais S. How to integrate recovery during heat acclimation. Br J Sports Med. 2021;55:185–6.

    Article  PubMed  Google Scholar 

  125. Coggan AR, Coyle EF. Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol Bethesda Md. 1985;1988(65):1703–9.

    Google Scholar 

  126. Brenner I, Shek PN, Zamecnik J, Shephard RJ. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med. 1998;19:130–43.

    Article  PubMed  CAS  Google Scholar 

  127. Hanstock HG, Walsh NP, Edwards JP, Fortes MB, Cosby SL, Nugent A, et al. Tear fluid SIgA as a noninvasive biomarker of mucosal immunity and common cold risk. Med Sci Sports Exerc. 2016;48:569–77.

    Article  PubMed  CAS  Google Scholar 

  128. Walsh NP, Oliver SJ. Exercise, immune function and respiratory infection: an update on the influence of training and environmental stress. Immunol Cell Biol. 2016;94:132–9.

    Article  PubMed  CAS  Google Scholar 

  129. Travers G, Nichols D, Riding N, González-Alonso J, Périard JD. Heat acclimation with controlled heart rate: influence of hydration status. Med Sci Sports Exerc. 2020;52:1815–24.

    Article  PubMed  CAS  Google Scholar 

  130. Marquet L-A, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, et al. Enhanced endurance performance by periodization of carbohydrate intake: “Sleep Low” strategy. Med Sci Sports Exerc. 2016;48:663–72.

    Article  PubMed  CAS  Google Scholar 

  131. Mitchell DC, Cheng FW, Still CD, Jensen GL. A validation of Automated Self-Administered 24-Hour Dietary Recalls (ASA24) relative to interviewer-administered recalls using the Nutrition Data System for Research (NDSR). FASEB J. 2016;30:43.3.

    Article  Google Scholar 

Download references

Acknowledgements

No funds, grants, or support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rosbrook.

Ethics declarations

Author Contributions

P.R. conceptualized the topic, performed the literature search, and drafted the article. L.M.M. and J.L.P. provided critical revisions. All authors read and approved the final version.

Competing Interests

The authors declare no competing interests in the current article. The views expressed in this manuscript are those of the authors and do not reflect the official policy of the US Government, Department of Energy, Department of the Army, or Department of Defense.

Data and Code Availability

There are no data associated with this article.

Funding

There was no funding received to support this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosbrook, P., Margolis, L.M. & Pryor, J.L. Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review. Sports Med 54, 3005–3017 (2024). https://doi.org/10.1007/s40279-024-02109-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-024-02109-x

Navigation