Skip to main content

Advertisement

Log in

Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother’s immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Bourne, G. (1962). The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgraduate Medical Journal, 38, 193–201

    Article  CAS  Google Scholar 

  2. Than, N. G., et al. (2019). Editorial: Fetal-Maternal Immune Interactions in Pregnancy. Frontiers In Immunology, 10, 2729

    Article  CAS  Google Scholar 

  3. Alviano, F., et al. (2007). Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. Bmc Developmental Biology, 7, 11

    Article  Google Scholar 

  4. Sharma, A., & Yadav, K. (2015). Amniotic membrane - A Novel material for the root coverage: A case series. J Indian Soc Periodontol, 19(4), 444–448

    Article  Google Scholar 

  5. Mehats, C., et al. (2011). [Biochemistry of fetal membranes rupture]. Gynécologie, Obstétrique & Fertilité, 39(6), 365–369

    Article  CAS  Google Scholar 

  6. Mermet, I., et al. (2007). Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair And Regeneration : Official Publication Of The Wound Healing Society [And] The European Tissue Repair Society, 15(4), 459–464

    Article  Google Scholar 

  7. Niknejad, H., et al. (2008). Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater, 15, 88–99

    Article  CAS  Google Scholar 

  8. Ganatra, M. A. (2003). Amniotic membrane in surgery. The Journal Of The Pakistan Medical Association, 53(1), 29–32

    CAS  Google Scholar 

  9. Cai, J., et al. (2010). Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal Of Biological Chemistry, 285(15), 11227–11234

    Article  CAS  Google Scholar 

  10. Ilancheran, S., et al. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology Of Reproduction, 77(3), 577–588

    Article  CAS  Google Scholar 

  11. Miki, T., et al. (2005). Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23(10), 1549–1559

    Article  CAS  Google Scholar 

  12. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regenerative Medicine, 4(3), 423–433

    Article  Google Scholar 

  13. Guleria, I., & Sayegh, M. H. (2007). Maternal acceptance of the fetus: true human tolerance. The Journal Of Immunology, 178(6), 3345–3351

    Article  CAS  Google Scholar 

  14. Moffett, A., & Loke, C. (2006). Immunology of placentation in eutherian mammals. Nature Reviews Immunology, 6(8), 584–594

    Article  CAS  Google Scholar 

  15. Chen, S. J., Liu, Y. L., & Sytwu, H. K. (2012). Immunologic regulation in pregnancy: from mechanism to therapeutic strategy for immunomodulation. Clinical And Developmental Immunology, 2012, 258391

    Article  Google Scholar 

  16. PrabhuDas, M., et al. (2015). Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nature Immunology, 16(4), 328–334

    Article  CAS  Google Scholar 

  17. Kammerer, U., et al. (2008). Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation. Immunol Invest, 37(5), 499–533

    Article  CAS  Google Scholar 

  18. Chaouat, G., et al. (2004). TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm. International Archives Of Allergy And Immunology, 134(2), 93–119

    Article  Google Scholar 

  19. Gardner, L., & Moffett, A. (2003). Dendritic cells in the human decidua. Biology Of Reproduction, 69(4), 1438–1446

    Article  CAS  Google Scholar 

  20. Hanna, J., & Mandelboim, O. (2007). When killers become helpers. Trends In Immunology, 28(5), 201–206

    Article  CAS  Google Scholar 

  21. Houser, B. L., et al. (2011). Two unique human decidual macrophage populations. The Journal Of Immunology, 186(4), 2633–2642

    Article  CAS  Google Scholar 

  22. Liu, S., et al. (2017). The role of decidual immune cells on human pregnancy. Journal Of Reproductive Immunology, 124, 44–53

    Article  CAS  Google Scholar 

  23. Svensson-Arvelund, J., et al. (2015). The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. The Journal Of Immunology, 194(4), 1534–1544

    Article  CAS  Google Scholar 

  24. Moore, K. W., et al. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review Of Immunology, 19, 683–765

    Article  CAS  Google Scholar 

  25. Mellor, A. L., et al. (2001). Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunology, 2(1), 64–68

    Article  CAS  Google Scholar 

  26. Gonzalez, A., et al. (2012). The immunosuppressive molecule HLA-G and its clinical implications. Critical Reviews In Clinical Laboratory Sciences, 49(3), 63–84

    Article  CAS  Google Scholar 

  27. Contini, P., et al. (2020). HLA-G Expressing Immune Cells in Immune Mediated Diseases. Frontiers In Immunology, 11, 1613

    Article  CAS  Google Scholar 

  28. Kubo, M., et al. (2001). Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci, 42(7), 1539–1546

    CAS  Google Scholar 

  29. Tabatabaei, M., et al. (2014). Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin. Avicenna J Med Biotechnol, 6(1), 10–20

    CAS  Google Scholar 

  30. Hall, O. J., & Klein, S. L. (2017). Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunology, 10(5), 1097–1107

    Article  CAS  Google Scholar 

  31. Raghupathy, R., & Szekeres-Bartho, J. (2022). Progesterone: A Unique Hormone with Immunomodulatory Roles in Pregnancy.Int J Mol Sci, 23(3)

  32. Aluvihare, V. R., Kallikourdis, M., & Betz, A. G. (2004). Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology, 5(3), 266–271

    Article  CAS  Google Scholar 

  33. Beagley, K. W., & Gockel, C. M. (2003). Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. Fems Immunology And Medical Microbiology, 38(1), 13–22

    Article  CAS  Google Scholar 

  34. Miyaura, H., & Iwata, M. (2002). Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. The Journal Of Immunology, 168(3), 1087–1094

    Article  CAS  Google Scholar 

  35. Clark, D. A., Chaouat, G., & Gorczynski, R. M. (2002). Thinking outside the box: mechanisms of environmental selective pressures on the outcome of the materno-fetal relationship. American Journal Of Reproductive Immunology, 47(5), 275–282

    Article  Google Scholar 

  36. Saito, S., et al. (1999). Distribution of Th1, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol, 42(4): p. 240-5

  37. Rebar, R. W. (2009). Premature ovarian failure. Obstetrics And Gynecology, 113(6), 1355–1363

    Article  Google Scholar 

  38. Dragojevic-Dikic, S., et al. (2010). An immunological insight into premature ovarian failure (POF). Autoimmun Rev, 9(11), 771–774

    Article  Google Scholar 

  39. Hoek, A., Schoemaker, J., & Drexhage, H. A. (1997). Premature ovarian failure and ovarian autoimmunity. Endocrine Reviews, 18(1), 107–134

    CAS  Google Scholar 

  40. Chernyshov, V. P., et al. (2001). Immune disorders in women with premature ovarian failure in initial period. American Journal Of Reproductive Immunology, 46(3), 220–225

    Article  CAS  Google Scholar 

  41. Tung, K. S., et al. (2001). Autoimmune ovarian disease: mechanism of induction and prevention. J Soc Gynecol Investig, 8(1 Suppl Proceedings): p. S49-51

  42. Corenblum, B., Rowe, T., & Taylor, P. J. (1993). High-dose, short-term glucocorticoids for the treatment of infertility resulting from premature ovarian failure. Fertility And Sterility, 59(5), 988–991

    Article  CAS  Google Scholar 

  43. Sheikhansari, G., et al. (2018). Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomedicine & Pharmacotherapy, 102, 254–262

    Article  CAS  Google Scholar 

  44. Wang, J., et al. (2021). Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biol, 9, 749822

    Article  Google Scholar 

  45. Goswami, D., & Conway, G. S. (2005). Premature ovarian failure. Human Reproduction Update, 11(4), 391–410

    Article  CAS  Google Scholar 

  46. Kalu, E., & Panay, N. (2008). Spontaneous premature ovarian failure: management challenges. Gynecological Endocrinology, 24(5), 273–279

    Article  Google Scholar 

  47. Coughlan, C., et al. (2014). Recurrent implantation failure: definition and management. Reproductive Biomedicine Online, 28(1), 14–38

    Article  CAS  Google Scholar 

  48. Orvieto, R., Brengauz, M., & Feldman, B. (2015). A novel approach to normal responder patient with repeated implantation failures–a case report. Gynecological Endocrinology, 31(6), 435–437

    Article  Google Scholar 

  49. Moffett, A., & Shreeve, N. (2015). First do no harm: uterine natural killer (NK) cells in assisted reproduction. Human Reproduction, 30(7), 1519–1525

    Article  CAS  Google Scholar 

  50. Male, V., et al. (2010). Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. The Journal Of Immunology, 185(7), 3913–3918

    Article  CAS  Google Scholar 

  51. Seshadri, S., & Sunkara, S. K. (2014). Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Human Reproduction Update, 20(3), 429–438

    Article  Google Scholar 

  52. Kwak-Kim, J. Y., et al. (2003). Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Human Reproduction, 18(4), 767–773

    Article  CAS  Google Scholar 

  53. Geva, E., et al. (2000). Prednisone and aspirin improve pregnancy rate in patients with reproductive failure and autoimmune antibodies: a prospective study. American Journal Of Reproductive Immunology, 43(1), 36–40

    Article  CAS  Google Scholar 

  54. Azem, F., et al. (2004). Increased rates of thrombophilia in women with repeated IVF failures. Human Reproduction, 19(2), 368–370

    Article  Google Scholar 

  55. Achache, H., et al. (2010). Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertility And Sterility, 94(4), 1271–1278

    Article  CAS  Google Scholar 

  56. Chakraborty, I., Das, S. K., & Dey, S. K. (1995). Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. Journal Of Endocrinology, 147(2), 339–352

    Article  CAS  Google Scholar 

  57. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1(1), 27–31

    Article  CAS  Google Scholar 

  58. Halder, J. B., et al. (2000). Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation. Genesis, 26(3), 213–224

    Article  CAS  Google Scholar 

  59. Hyder, S. M., et al. (2000). Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Research, 60(12), 3183–3190

    CAS  Google Scholar 

  60. Chung, I. B., et al. (2000). Expression and regulation of vascular endothelial growth factor in a first trimester trophoblast cell line. Placenta, 21(4), 320–324

    Article  CAS  Google Scholar 

  61. Qian, D., et al. (2004). Involvement of ERK1/2 pathway in TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Molecular Reproduction And Development, 68(2), 198–204

    Article  CAS  Google Scholar 

  62. Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18(1), 4–25

    Article  CAS  Google Scholar 

  63. Zwierzchowska, A., et al. (2018). Recurrent miscarriage is associated with increased ghrelin mRNA expression in the endometrium- a case-control study. Reproductive Biology, 18(1), 12–17

    Article  Google Scholar 

  64. Karim, S., et al. (2017). Genomic answers for recurrent spontaneous abortion in Saudi Arabia: An array comparative genomic hybridization approach. Reproductive Biology, 17(2), 133–143

    Article  Google Scholar 

  65. Diejomaoh, M. F. (2015). Recurrent spontaneous miscarriage is still a challenging diagnostic and therapeutic quagmire. Medical Principles And Practice : International Journal Of The Kuwait University, Health Science Centre, 24(Suppl 1), 38–55

    Article  Google Scholar 

  66. Saifi, B., et al. (2014). Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reproductive Biomedicine Online, 29(4), 481–489

    Article  CAS  Google Scholar 

  67. Sasaki, T., et al. (1997). Increased frequency of HLA-DR4 allele in women with unexplained recurrent spontaneous abortions, detected by the method of PCR-SSP. Journal Of Reproductive Immunology, 32(3), 273–279

    Article  CAS  Google Scholar 

  68. Yang, H., et al. (2009). Proportional change of CD4 + CD25 + regulatory T cells after lymphocyte therapy in unexplained recurrent spontaneous abortion patients. Fertility And Sterility, 92(1), 301–305

    Article  CAS  Google Scholar 

  69. Trundley, A., & Moffett, A. (2004). Human uterine leukocytes and pregnancy. Tissue Antigens, 63(1), 1–12

    Article  CAS  Google Scholar 

  70. Fedorcsak, P., et al. (2004). Impact of overweight and underweight on assisted reproduction treatment. Human Reproduction, 19(11), 2523–2528

    Article  Google Scholar 

  71. McQueen, D. B., et al. (2015). Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertility And Sterility, 104(4), 927–931

    Article  Google Scholar 

  72. Gilman-Sachs, A., et al. (1999). Natural killer (NK) cell subsets and NK cell cytotoxicity in women with histories of recurrent spontaneous abortions. American Journal Of Reproductive Immunology, 41(1), 99–105

    Article  CAS  Google Scholar 

  73. Ohta, A., et al. (2012). The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Frontiers In Immunology, 3, 190

    Article  CAS  Google Scholar 

  74. Quenby, S., et al. (1999). Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Human Reproduction, 14(9), 2386–2391

    Article  CAS  Google Scholar 

  75. Yuan, J., et al. (2015). Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion. Journal Of Reproductive Immunology, 110, 81–88

    Article  CAS  Google Scholar 

  76. Zhu, L., et al. (2017). Treg/Th17 Cell Imbalance and IL-6 Profile in Patients With Unexplained Recurrent Spontaneous Abortion. Reprod Sci, 24(6), 882–890

    Article  CAS  Google Scholar 

  77. Fu, B., Tian, Z., & Wei, H. (2014). TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cellular & Molecular Immunology, 11(6), 564–570

    Article  CAS  Google Scholar 

  78. Wang, W. J., et al. (2010). Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. Journal Of Reproductive Immunology, 84(2), 164–170

    Article  CAS  Google Scholar 

  79. Trussell, J., et al. (2009). Cost effectiveness of contraceptives in the United States. Contraception, 79(1), 5–14

    Article  Google Scholar 

  80. Said, E. A., et al. (2010). Programmed death-1-induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection. Nature Medicine, 16(4), 452–459

    Article  CAS  Google Scholar 

  81. Alijotas-Reig, J., Llurba, E., & Gris, J. M. (2014). Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta, 35(4), 241–248

    Article  CAS  Google Scholar 

  82. Yang, D., et al. (2021). Role of Transforming Growth Factor-beta1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy. Frontiers In Immunology, 12, 689181

    Article  CAS  Google Scholar 

  83. Parhizkar, F., et al. (2021). The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure. Immunology Letters, 236, 20–30

    Article  CAS  Google Scholar 

  84. Carp, H. (2019). Immunotherapy for recurrent pregnancy loss. Best Pract Res Clin Obstet Gynaecol, 60, 77–86

    Article  Google Scholar 

  85. Deng, T., Liao, X., & Zhu, S. (2022). Recent Advances in Treatment of Recurrent Spontaneous Abortion. Obstetrical & Gynecological Survey, 77(6), 355–366

    Article  Google Scholar 

  86. Francisco, P. D., Tan-Lim, C. S. C., Agcaoili-De, M. S. L., & Jesus (2022). Efficacy of lymphocyte immunotherapy in the treatment of recurrent pregnancy loss from alloimmunity: A systematic review and meta-analysis.Am J Reprod Immunol, : p.e13605

  87. Jeve, Y. B., & Davies, W. (2014). Evidence-based management of recurrent miscarriages. J Hum Reprod Sci, 7(3), 159–169

    Article  Google Scholar 

  88. Miki, T. (2018). Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. American Journal Of Reproductive Immunology, 80(4), e13003

    Article  Google Scholar 

  89. Kim, J. S., et al. (2000). Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Experimental Eye Research, 70(3), 329–337

    Article  CAS  Google Scholar 

  90. Akashi, T., et al. (1999). Synthesis of basement membrane by gastrointestinal cancer cell lines. The Journal Of Pathology, 187(2), 223–228

    Article  CAS  Google Scholar 

  91. Iozzo, R. V., & Murdoch, A. D. (1996). Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. The Faseb Journal, 10(5), 598–614

    Article  CAS  Google Scholar 

  92. Li, W., et al. (2006). Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Experimental Eye Research, 82(2), 282–292

    Article  CAS  Google Scholar 

  93. Seo, J. H., Kim, Y. H., & Kim, J. S. (2008). Properties of the amniotic membrane may be applicable in cancer therapy. Medical Hypotheses, 70(4), 812–814

    Article  CAS  Google Scholar 

  94. He, D., et al. (2020). LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes. Aging (Albany NY), 12(13), 12960–12986

    Article  CAS  Google Scholar 

  95. Miki, T., et al. (2007). Isolation of amniotic epithelial stem cells.Curr Protoc Stem Cell Biol, Chapter 1: p. Unit 1E 3.

  96. Chen, Y. T., et al. (2007). Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells, 25(8), 1995–2005

    Article  CAS  Google Scholar 

  97. Li, H., et al. (2005). Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci, 46(3), 900–907

    Article  Google Scholar 

  98. McDonald, C. A., et al. (2015). Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation, 12, 112

    Article  Google Scholar 

  99. Motedayyen, H., et al. (2017). Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. Bmc Research Notes, 10(1), 552

    Article  Google Scholar 

  100. Konofaos, P., & Terzis, J. K. (2013). FK506 and nerve regeneration: past, present, and future. Journal Of Reconstructive Microsurgery, 29(3), 141–148

    Article  Google Scholar 

  101. Wolbank, S., et al. (2007). Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering, 13(6), 1173–1183

    Article  CAS  Google Scholar 

  102. Samarkanova, D., et al. (2021). Cord blood and amniotic membrane extract eye drop preparations display immune-suppressive and regenerative properties. Scientific Reports, 11(1), 13754

    Article  CAS  Google Scholar 

  103. Wu, B., et al. (2021). Conditioned Medium of Human Amniotic Epithelial Cells Alleviates Experimental Allergic Conjunctivitis Mainly by IL-1ra and IL-10. Frontiers In Immunology, 12, 774601

    Article  CAS  Google Scholar 

  104. Liu, J., et al. (2021). Human Amniotic Epithelial Cells Promote the Proliferation of Human Corneal Endothelial Cells by Regulating Telomerase Activity via the Wnt/beta-catenin Pathway. Current Eye Research, 46(2), 159–167

    Article  CAS  Google Scholar 

  105. Evans, M. A., et al. (2018). Acute or Delayed Systemic Administration of Human Amnion Epithelial Cells Improves Outcomes in Experimental Stroke. Stroke, 49(3), 700–709

    Article  Google Scholar 

  106. Lim, R., et al. (2017). A Pilot Study Evaluating the Safety of Intravenously Administered Human Amnion Epithelial Cells for the Treatment of Hepatic Fibrosis. Frontiers In Pharmacology, 8, 549

    Article  Google Scholar 

  107. Yawno, T., et al. (2017). Human Amnion Epithelial Cells Protect Against White Matter Brain Injury After Repeated Endotoxin Exposure in the Preterm Ovine Fetus. Cell Transplantation, 26(4), 541–553

    Article  Google Scholar 

  108. Zhang, Q., et al. (2019). Human Amniotic Epithelial Cell-Derived Exosomes Restore Ovarian Function by Transferring MicroRNAs against Apoptosis. Mol Ther Nucleic Acids, 16, 407–418

    Article  Google Scholar 

  109. Zhu, D., et al. (2017). Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Research & Therapy, 8(1), 257

    Article  Google Scholar 

  110. Di Germanio, C., et al. (2016). Amniotic Epithelial Cells: A New Tool to Combat Aging and Age-Related Diseases? Front Cell Dev Biol, 4, 135

    Article  Google Scholar 

  111. Hodge, A., et al. (2014). Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy, 16(8), 1132–1144

    Article  CAS  Google Scholar 

  112. Basu, J., & Ludlow, J. W. (2016). Exosomes for repair, regeneration and rejuvenation. Expert Opinion On Biological Therapy, 16(4), 489–506

    Article  CAS  Google Scholar 

  113. Maguire, G. (2013). Stem cell therapy without the cells. Communicative & Integrative Biology, 6(6), e26631

    Article  Google Scholar 

  114. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion In Pharmacology, 27, 19–23

    Article  CAS  Google Scholar 

  115. Yao, X., et al. (2016). The Paracrine Effect of Transplanted Human Amniotic Epithelial Cells on Ovarian Function Improvement in a Mouse Model of Chemotherapy-Induced Primary Ovarian Insufficiency. Stem Cells Int, 2016: p. 4148923

  116. Kamiya, K., et al. (2005). Topical application of culture supernatant from human amniotic epithelial cells suppresses inflammatory reactions in cornea. Experimental Eye Research, 80(5), 671–679

    Article  CAS  Google Scholar 

  117. Kim, T. H., et al. (2013). Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits. Journal Of Veterinary Science, 14(1), 61–67

    Article  CAS  Google Scholar 

  118. Zhang, Q., et al. (2015). Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Research & Therapy, 6, 152

    Article  Google Scholar 

  119. Tan, J. L., et al. (2014). Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplantation, 23(3), 319–328

    Article  Google Scholar 

  120. Zhang, Q., et al. (2017). Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Research & Therapy, 8(1), 270

    Article  Google Scholar 

  121. Wang, F., et al. (2013). Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Research & Therapy, 4(5), 124

    Article  Google Scholar 

  122. Zhao, B., et al. (2017). Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. Journal Of Molecular Histology, 48(2), 121–132

    Article  CAS  Google Scholar 

  123. Zhao, B., et al. (2017). [Effects of human amniotic epithelial stem cells-derived exosomes on healing of wound with full-thickness skin defect in rats]. Zhonghua Shao Shang Za Zhi, 33(1), 18–23

    CAS  Google Scholar 

  124. Zhao, B., et al. (2018). Exosomal MicroRNAs Derived from Human Amniotic Epithelial Cells Accelerate Wound Healing by Promoting the Proliferation and Migration of Fibroblasts. Stem Cells Int, 2018: p. 5420463

  125. Zhang, Q., & Lai, D. (2020). Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Research & Therapy, 11(1), 439

    Article  CAS  Google Scholar 

  126. Kuk, N., et al. (2019). Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine non-alcoholic steatohepatitis. Journal Of Gastroenterology And Hepatology, 34(8), 1441–1449

    CAS  Google Scholar 

  127. Xiao, G. Y., et al. (2016). Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Scientific Reports, 6, 23120

    Article  CAS  Google Scholar 

  128. Ding, C., et al. (2017). Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics. Stem Cell Research & Therapy, 8(1), 173

    Article  Google Scholar 

  129. Ding, C., et al. (2018). Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Research & Therapy, 9(1), 55

    Article  CAS  Google Scholar 

  130. Araujo, A. B., et al. (2017). Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord. Cytotherapy, 19(5), 577–585

    Article  CAS  Google Scholar 

  131. Toda, A., et al. (2007). The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. Journal Of Pharmacological Sciences, 105(3), 215–228

    Article  CAS  Google Scholar 

  132. Hou, S., et al. (2020). Vitamin C improves the therapeutic potential of human amniotic epithelial cells in premature ovarian insufficiency disease. Stem Cell Research & Therapy, 11(1), 159

    Article  CAS  Google Scholar 

  133. Khadem, F., et al. (2019). Immunoregulatory Effects of Human Amnion Epithelial Cells on Natural Killer and T Cells in Women with Recurrent Spontaneous Abortion (RSA). Turkish journal of immunology, 7(1), 21–30

    Google Scholar 

  134. Long, E. O. (1999). Regulation of immune responses through inhibitory receptors. Annual Review Of Immunology, 17, 875–904

    Article  CAS  Google Scholar 

  135. Alter, G., Malenfant, J. M., & Altfeld, M. (2004). CD107a as a functional marker for the identification of natural killer cell activity. Journal Of Immunological Methods, 294(1–2), 15–22

    Article  CAS  Google Scholar 

  136. Morandi, F., et al. (2019). Ectonucleotidase Expression on Human Amnion Epithelial Cells: Adenosinergic Pathways and Dichotomic Effects on Immune Effector Cell Populations. The Journal Of Immunology, 202(3), 724–735

    Article  CAS  Google Scholar 

  137. Motedayyen, H., et al. (2018). Immunomodulatory effects of human amniotic epithelial cells on naive CD4(+) T cells from women with unexplained recurrent spontaneous abortion. Placenta, 71, 31–40

    Article  CAS  Google Scholar 

  138. Motedayyen, H., et al. (2018). Human amniotic epithelial cells inhibit activation and pro-inflammatory cytokines production of naive CD4 + T cells from women with unexplained recurrent spontaneous abortion. Reproductive Biology, 18(2), 182–188

    Article  Google Scholar 

  139. Liu, Y. H., et al. (2012). Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One, 7(4), e35758

    Article  CAS  Google Scholar 

  140. Khan, I., et al. (2015). Effects of Wharton’s jelly-derived mesenchymal stem cells on neonatal neutrophils. J Inflamm Res, 8, 1–8

    Google Scholar 

  141. Motedayyen, H., et al. (2018). The effect of lipopolysaccharide on anti-inflammatory and pro-inflammatory cytokines production of human amniotic epithelial cells. Reproductive Biology, 18(4), 404–409

    Article  Google Scholar 

  142. Alipour, R., et al. (2020). Human Amniotic Epithelial Cells Affect the Functions of Neutrophils. Int J Stem Cells, 13(2), 212–220

    Article  Google Scholar 

  143. Taheri, R. A., et al. (2018). The effect of lipopolysaccharide on the expression level of immunomodulatory and immunostimulatory factors of human amniotic epithelial cells. Bmc Research Notes, 11(1), 343

    Article  Google Scholar 

  144. Gonzalez, C. R., et al. (2010). Expression of the TGF-beta1 system in human testicular pathologies. Reproductive Biology And Endocrinology : Rb&E, 8, 148

    Article  CAS  Google Scholar 

  145. Letterio, J. J., & Roberts, A. B. (1998). Regulation of immune responses by TGF-beta. Annual Review Of Immunology, 16, 137–161

    Article  CAS  Google Scholar 

  146. Alhomrani, M., et al. (2017). The Human Amnion Epithelial Cell Secretome Decreases Hepatic Fibrosis in Mice with Chronic Liver Fibrosis. Frontiers In Pharmacology, 8, 748

    Article  Google Scholar 

  147. Lim, R., et al. (2013). Preterm human amnion epithelial cells have limited reparative potential. Placenta, 34(6), 486–492

    Article  CAS  Google Scholar 

  148. Yu, D., et al. (2008). Asherman syndrome–one century later. Fertility And Sterility, 89(4), 759–779

    Article  Google Scholar 

  149. Li, B., et al. (2019). Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Research & Therapy, 10(1), 257

    Article  Google Scholar 

  150. Harris, J. (2011). Autophagy and cytokines. Cytokine, 56(2), 140–144

    Article  CAS  Google Scholar 

  151. Gan, L., et al. (2017). Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy, 19(5), 603–616

    Article  CAS  Google Scholar 

  152. Ouyang, X., et al. (2020). Transplantation of Human Amnion Epithelial Cells Improves Endometrial Regeneration in Rat Model of Intrauterine Adhesions. Stem Cells And Development, 29(20), 1346–1362

    Article  CAS  Google Scholar 

  153. Abdo, R. J. (2016). Treatment of diabetic foot ulcers with dehydrated amniotic membrane allograft: a prospective case series. Journal Of Wound Care, 25(Sup7), S4–S9

    Article  CAS  Google Scholar 

  154. Clare, G., et al., Amniotic membrane transplantation for acute ocular burns.Cochrane Database Syst Rev, 2012(9): p.CD009379

  155. Xu, H., et al. (2019). Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int, 2019, 5432301

    Article  Google Scholar 

  156. Hu, L., Z.C., Safety and Therapeutic Effect of Human Amniotic Epithelial Cells in Severe Refractory Asherman’s Syndrome. NCT03223454,2017–2021

  157. Wang Liang, L. Y.,Human Amniotic Epithelial Stem Cell in Treatment of Refractory Severe Intrauterine Adhesion.NCT03381807,2020–2023

  158. Lia, D., W.Q., A Therapeutic Trial of Human Amniotic Epithelial Cells Transplantation for Primary Ovarian Failure. NCT02912104,2016–2022

  159. Zhang, C., Z.H., Clinical Study of Minimally Invasive Implantation of Human Amniotic Epithelial Cells in the Treatment of Premature Ovarian Insufficiency. NCT03207412,2017–2019

  160. Akle, C. A., et al. (1981). Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet, 2(8254), 1003–1005

    Article  CAS  Google Scholar 

  161. Adly, O. A., Abbas, A. M. M. A. H., Ellabban, A. M., Ali, O. S., & Mohamed, B. A. (2010).Assessment of amniotic and polyurethane membrane dressings in the treatment of burns. Burns, 36(5):703–710

    CAS  Google Scholar 

  162. Gramignoli, R., et al. (2016). Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures.Curr Protoc Stem Cell Biol, 37: p. 1E 10 1-1E 10 13.

Download references

Funding

This work was supported by the Isfahan University of Medical Sciences, Isfahan, Iran (grant No. 398865).

Author information

Authors and Affiliations

Authors

Contributions

F.R. and N.E. designed the study. F.R. and N.E. wrote the paper in consultation with A.R. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nafiseh Esmaeil.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent to Publish

Not Applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezayat, F., Esmaeil, N. & Rezaei, A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev and Rep 19, 368–381 (2023). https://doi.org/10.1007/s12015-022-10464-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10464-3

Keywords

Navigation