We study several problems in the field of modified divisors; more precisely, from the theory of exponential and infinitary divisors. We analyze the behavior of modified divisors, sum-of-divisors, and totient functions. Our main results are connected with the asymptotic behavior of mean values and explicit estimates of the extreme orders for these functions.
Similar content being viewed by others
References
G. L. Cohen, “On an integer’s infinitary divisors,” Math. Comput., 54, No. 189, 395–411 (1990).
G. L. Cohen and P. Hagis, Jr., “Arithmetic functions associated with the infinitary divisors of an integer,” Int. J. Math. Math. Sci., 16, No. 2, 373–383 (1993).
P. Dusart, “Inegalites explicites pour ψ(X), θ(X), π(X) et les nombres premiers,” C. R. Math. Acad. Sci., Soc. Roy. Can., 21, No. 2, 53–59 (1999).
J. Fabrykowski and M. V. Subbarao, “On e-perfect numbers not divisible by 3,” Nieuw Arch. Wisk., 4, 165–173 (1986).
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, New York (2008).
M. N. Huxley, “Exponential sums and the Riemann zeta function V,” Proc. London Math. Soc., 90, No. 1, 1–41 (2005).
A. Ivić, “Two inequalities for the sum of divisors functions,” Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu., 7, 17–22 (1977).
A. Ivić, “A convolution theorem with applications to some divisor functions,” Publ. Inst. Math. Nouv. Ser., 24, No. 38, 67–78 (1978).
A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, New York (2003).
C. Jia and A. Sankaranarayanan, The Mean Square of Divisor Function, arXiv: 1311.4041v2 (2014).
E. Krätzel, Lattice Points, Kluwer, Dordrecht (1988).
E. Krätzel, “Estimates in the general divisor problem,” Abh. Math. Semin. Univ. Hamburg, 62, No. 1, 191–206 (1992).
E. Krätzel, “New estimates in the four-dimensional divisor problem with applications,” Acta Math. Hung., 126, No. 3, 258–278 (2010).
M. Kühleitner and W. G. Nowak, “An omega theorem for a class of arithmetic functions,” Math. Nachr., 165, No. 1, 79–98 (1994).
N. Minculete and L. Tóth, “Exponential unitary divisors,” Ann. Univ. Sci. Budapest, Sec. Comput., 35, 205–216 (2011).
Y.-F. S. Pétermann, “Arithmetical functions involving exponential divisors: Note on two papers by L. Tóth,” Ann. Univ. Sci. Budapest, Sec. Comput., 32, 143–149 (2010).
Y.-F. S. Pétermann and J. Wu, “On the sum of exponential divisors of an integer,” Acta Math. Hung., 77, No. 1-2, 159–175 (1997).
M. V. Subbarao, “On some arithmetic convolutions,” in: Proc. of the Conf. “Theory of Arithmetical Functions” (Western Mich. Univ., April 29 – May 1, 1971), Springer, Berlin (1972), pp. 247–271.
D. Suryanarayana and R. Sita Rama Chandra Rao, “On the true maximum order of a class of arithmetic functions,” Math. J. Okayama Univ., 17, 95–101 (1975).
N. J. A. Sloane (editor), The On-Line Encyclopedia of Integer Sequences, URL: http://oeis.org.
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University Press, New York (1986).
L. Tóth, “On certain arithmetic functions involving exponential divisors,” Ann. Univ. Sci. Budapest, Sec. Comput., 24, 285–294 (2004).
L. Tóth, “On certain arithmetic functions involving exponential divisors. II,” Ann. Univ. Sci. Budapest, Sec. Comput., 27, 155–166 (2007).
L. Tóth, “An order result for the exponential divisor function,” Publ. Math. Debrecen., 71, No. 1-2, 165–171 (2007).
J. Wu, “Probleme de diviseurs exponentiels et entiers exponentiellement sans facteur carre,” J. Theor. Nombres Bordx., 7, No. 1, 133–141 (1995).
Author information
Authors and Affiliations
Additional information
Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 8, pp. 1068–1079, August, 2016.
Rights and permissions
About this article
Cite this article
Lelechenko, A. Exponential and Infinitary Divisors. Ukr Math J 68, 1222–1237 (2017). https://doi.org/10.1007/s11253-017-1289-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-017-1289-7