Skip to main content
Log in

Exponential and Infinitary Divisors

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study several problems in the field of modified divisors; more precisely, from the theory of exponential and infinitary divisors. We analyze the behavior of modified divisors, sum-of-divisors, and totient functions. Our main results are connected with the asymptotic behavior of mean values and explicit estimates of the extreme orders for these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Cohen, “On an integer’s infinitary divisors,” Math. Comput., 54, No. 189, 395–411 (1990).

    MathSciNet  MATH  Google Scholar 

  2. G. L. Cohen and P. Hagis, Jr., “Arithmetic functions associated with the infinitary divisors of an integer,” Int. J. Math. Math. Sci., 16, No. 2, 373–383 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Dusart, “Inegalites explicites pour ψ(X), θ(X), π(X) et les nombres premiers,” C. R. Math. Acad. Sci., Soc. Roy. Can., 21, No. 2, 53–59 (1999).

  4. J. Fabrykowski and M. V. Subbarao, “On e-perfect numbers not divisible by 3,” Nieuw Arch. Wisk., 4, 165–173 (1986).

    MathSciNet  MATH  Google Scholar 

  5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, New York (2008).

    MATH  Google Scholar 

  6. M. N. Huxley, “Exponential sums and the Riemann zeta function V,” Proc. London Math. Soc., 90, No. 1, 1–41 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ivić, “Two inequalities for the sum of divisors functions,” Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu., 7, 17–22 (1977).

  8. A. Ivić, “A convolution theorem with applications to some divisor functions,” Publ. Inst. Math. Nouv. Ser., 24, No. 38, 67–78 (1978).

    MathSciNet  MATH  Google Scholar 

  9. A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, New York (2003).

    MATH  Google Scholar 

  10. C. Jia and A. Sankaranarayanan, The Mean Square of Divisor Function, arXiv: 1311.4041v2 (2014).

  11. E. Krätzel, Lattice Points, Kluwer, Dordrecht (1988).

    MATH  Google Scholar 

  12. E. Krätzel, “Estimates in the general divisor problem,” Abh. Math. Semin. Univ. Hamburg, 62, No. 1, 191–206 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Krätzel, “New estimates in the four-dimensional divisor problem with applications,” Acta Math. Hung., 126, No. 3, 258–278 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kühleitner and W. G. Nowak, “An omega theorem for a class of arithmetic functions,” Math. Nachr., 165, No. 1, 79–98 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Minculete and L. Tóth, “Exponential unitary divisors,” Ann. Univ. Sci. Budapest, Sec. Comput., 35, 205–216 (2011).

  16. Y.-F. S. Pétermann, “Arithmetical functions involving exponential divisors: Note on two papers by L. Tóth,” Ann. Univ. Sci. Budapest, Sec. Comput., 32, 143–149 (2010).

  17. Y.-F. S. Pétermann and J. Wu, “On the sum of exponential divisors of an integer,” Acta Math. Hung., 77, No. 1-2, 159–175 (1997).

  18. M. V. Subbarao, “On some arithmetic convolutions,” in: Proc. of the Conf. “Theory of Arithmetical Functions” (Western Mich. Univ., April 29 – May 1, 1971), Springer, Berlin (1972), pp. 247–271.

  19. D. Suryanarayana and R. Sita Rama Chandra Rao, “On the true maximum order of a class of arithmetic functions,” Math. J. Okayama Univ., 17, 95–101 (1975).

  20. N. J. A. Sloane (editor), The On-Line Encyclopedia of Integer Sequences, URL: http://oeis.org.

  21. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University Press, New York (1986).

    MATH  Google Scholar 

  22. L. Tóth, “On certain arithmetic functions involving exponential divisors,” Ann. Univ. Sci. Budapest, Sec. Comput., 24, 285–294 (2004).

  23. L. Tóth, “On certain arithmetic functions involving exponential divisors. II,” Ann. Univ. Sci. Budapest, Sec. Comput., 27, 155–166 (2007).

  24. L. Tóth, “An order result for the exponential divisor function,” Publ. Math. Debrecen., 71, No. 1-2, 165–171 (2007).

  25. J. Wu, “Probleme de diviseurs exponentiels et entiers exponentiellement sans facteur carre,” J. Theor. Nombres Bordx., 7, No. 1, 133–141 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 8, pp. 1068–1079, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lelechenko, A. Exponential and Infinitary Divisors. Ukr Math J 68, 1222–1237 (2017). https://doi.org/10.1007/s11253-017-1289-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1289-7

Navigation