Skip to main content
Log in

A q-analog of Schläfli and Gould identities on Stirling numbers

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Stirling numbers of both kinds are linked to each other via two combinatorial identities due to Schläfli and Gould. Using q-analogs of Stirling numbers defined as inversion generating functions, we provide q-analogs of the two identities. The proof is computational and we leave open the problem of finding a more combinatorial one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aigner, M.: A Course in Enumeration. Graduate Text in Math, vol. 238. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Charalambides, C.: Enumerative Combinatorics. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  3. Comtet, L.: Analyse Combinatoire. Presses Universitaires de France, Paris (1970)

    MATH  Google Scholar 

  4. Flajolet, P.: Combinatorial aspects of continued fractions. Discret. Math. 41, 145–153 (1982)

    Article  MATH  Google Scholar 

  5. Gould, H.W.: Stirling number representation problems. Proc. Am. Math. Soc. 11, 447–451 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gould, H.W., Kwong, H., Quaintance, J.: On certain sums of Stirling numbers with binomial coefficients. J. Integer Seq. 18 (2015), Article 15.9.6

  7. Josuat-Vergès, M.: Combinatorics of the three-parameter PASEP partition function. Electron. J. Comb. 18(1) (2011), Article P22

  8. Josuat-Vergès, M., Rubey, M.: Crossings, Motzkin paths, and moments. Discret. Math. 311(18–19), 2064–2078 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Kreweras, G.: Sur les partitions non croisées d’un cycle. Discret. Math. 1(4), 333–350 (1972)

    Article  MATH  Google Scholar 

  11. Quaintance, J., Gould, H.W.: Combinatorial Identities for Stirling Numbers (The Unpublished Notes of H.W. Gould). World Scientific, Singapore (2015)

  12. Rainville, E.D.: Special Functions. Macmillan, New York (1960)

    MATH  Google Scholar 

  13. Roblet, E., Viennot, X.G.: Théorie combinatoire des T-fractions et approximants de Padé en deux points. Discret. Math. 153(1–3), 271–288 (1996)

    Article  MATH  Google Scholar 

  14. Schläfli, L.: Sur les coëfficients du développement du produit \(1(1 + x)(1 + 2x) \dots (1 + (n-1)x)\) suivant les puissances ascendantes de \(x\). J. Reine Angew. Math. 43, 1–22 (1852)

    MathSciNet  Google Scholar 

  15. Schläfli, L.: Ergänzung der abhandlung über die entwickelung des produkts \(1. (1+x). (1+2x). (1+3x)\dots (1+(n-1)x)= \prod ^n x \). J. Reine Angew. Math. 67, 179–182 (1867)

    Article  MathSciNet  Google Scholar 

  16. Schlömilch, O.: Recherches sur les coefficients des facultés analytiques. J. Reine Angew. Math. 44, 344–355 (1852)

    Article  MathSciNet  Google Scholar 

  17. Sloane, N.J.A. (ed.): The On-Line Encyclopedia of Integer Sequences. https://oeis.org (2016)

  18. Sun, Z.-H.: Some inversion formulas and formulas for Stirling numbers. Graphs Comb. 29, 1087–1100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Josuat-Vergès.

Additional information

Supported by Agence Nationale de la Recherche ANR CARMA (ANR-12-BS01-0017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josuat-Vergès, M. A q-analog of Schläfli and Gould identities on Stirling numbers. Ramanujan J 46, 483–507 (2018). https://doi.org/10.1007/s11139-017-9885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9885-6

Keywords

Mathematics Subject Classification