Abstract
Stirling numbers of both kinds are linked to each other via two combinatorial identities due to Schläfli and Gould. Using q-analogs of Stirling numbers defined as inversion generating functions, we provide q-analogs of the two identities. The proof is computational and we leave open the problem of finding a more combinatorial one.


Similar content being viewed by others
References
Aigner, M.: A Course in Enumeration. Graduate Text in Math, vol. 238. Springer, Berlin (2007)
Charalambides, C.: Enumerative Combinatorics. Chapman & Hall/CRC, Boca Raton (2002)
Comtet, L.: Analyse Combinatoire. Presses Universitaires de France, Paris (1970)
Flajolet, P.: Combinatorial aspects of continued fractions. Discret. Math. 41, 145–153 (1982)
Gould, H.W.: Stirling number representation problems. Proc. Am. Math. Soc. 11, 447–451 (1960)
Gould, H.W., Kwong, H., Quaintance, J.: On certain sums of Stirling numbers with binomial coefficients. J. Integer Seq. 18 (2015), Article 15.9.6
Josuat-Vergès, M.: Combinatorics of the three-parameter PASEP partition function. Electron. J. Comb. 18(1) (2011), Article P22
Josuat-Vergès, M., Rubey, M.: Crossings, Motzkin paths, and moments. Discret. Math. 311(18–19), 2064–2078 (2011)
Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)
Kreweras, G.: Sur les partitions non croisées d’un cycle. Discret. Math. 1(4), 333–350 (1972)
Quaintance, J., Gould, H.W.: Combinatorial Identities for Stirling Numbers (The Unpublished Notes of H.W. Gould). World Scientific, Singapore (2015)
Rainville, E.D.: Special Functions. Macmillan, New York (1960)
Roblet, E., Viennot, X.G.: Théorie combinatoire des T-fractions et approximants de Padé en deux points. Discret. Math. 153(1–3), 271–288 (1996)
Schläfli, L.: Sur les coëfficients du développement du produit \(1(1 + x)(1 + 2x) \dots (1 + (n-1)x)\) suivant les puissances ascendantes de \(x\). J. Reine Angew. Math. 43, 1–22 (1852)
Schläfli, L.: Ergänzung der abhandlung über die entwickelung des produkts \(1. (1+x). (1+2x). (1+3x)\dots (1+(n-1)x)= \prod ^n x \). J. Reine Angew. Math. 67, 179–182 (1867)
Schlömilch, O.: Recherches sur les coefficients des facultés analytiques. J. Reine Angew. Math. 44, 344–355 (1852)
Sloane, N.J.A. (ed.): The On-Line Encyclopedia of Integer Sequences. https://oeis.org (2016)
Sun, Z.-H.: Some inversion formulas and formulas for Stirling numbers. Graphs Comb. 29, 1087–1100 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by Agence Nationale de la Recherche ANR CARMA (ANR-12-BS01-0017).
Rights and permissions
About this article
Cite this article
Josuat-Vergès, M. A q-analog of Schläfli and Gould identities on Stirling numbers. Ramanujan J 46, 483–507 (2018). https://doi.org/10.1007/s11139-017-9885-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-017-9885-6