Skip to main content
Log in

Risikofolgeabschätzung für den Einsatz mikrobieller Antagonisten: Gibt es Effekte auf Nichtzielorganismen?

Risk assessment for microbial antagonists: Are there effects on non-target organisms?

  • Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Zusammenfassung

Die biologische Kontrolle phytopathogener Pilze auf der Basis antagonistischer Mikroorganismen stellt eine umweltfreundliche Alternative im Pflanzenschutz dar. Dennoch können unerwünschte Nebeneffekte, z. B. die Wirkung auf Nichtzielorganismen, verbunden mit dem Verlust ökologisch wichtiger Bodenfunktionen, nicht von vornherein ausgeschlossen werden. Ziel dieser Studie war es, die Untersuchung der Auswirkung von Biofungiziden (Biological Control Agents = BCAs) auf mikrobielle Nichtzielorganismen unter kommerziellen Anbaubedingungen zu untersuchen. In Freilandversuchen wurden die bakteriellen BCAs Serratia plymuthica HRO-C48 und Streptomyces sp. HRO-71 zur Kontrolle von Verticillium dahliae an Erdbeere und Kartoffel, die bakteriellen BCAs Pseudomonas trivialis 3Re2-7, P. fluorescens L13-6-12, S. plymuthica 3Re4-18 sowie die pilzlichen Antagonisten Trichoderma reesei G1/8 und T. viride G3/2 zur Unterdrückung von Rhizoctonia solani an Kopfsalat oder Kartoffel appliziert. Eine verallgemeinernde Interpretation der Ergebnisse ist aufgrund der Zugehörigkeit der selektierten BCAs zu verschiedenen Mikroorganismengruppen wie grampositiven (HRO-71) und gramnegativen (HRO-C48, L13-6-12, 3Re2-7, 3Re4-18) Bakterien oder den Ascomyceten (G1/8, G3/2) möglich. Die BCAs besiedeln sowohl die Rhizosphäre als auch die Endorhiza (3Re2-7, 3Re4-18). An keiner Kulturpflanze waren nach Applikation der BCAs langzeitige Veränderungen der pflanzenassoziierten Mikroflora festzustellen. Damit ist keine nachhaltige Gefährdung für die indigenen Mikroorganismenpopulationen gegeben. Die neu gewonnenen Erkenntnisse können zu einer schnelleren Entwicklung und Zulassung von potenziellen mikrobiellen Pflanzenschutzpräparaten beitragen.

Abstract

Biological control of phytopathogenic fungi using antagonistic microorganisms is an environmentally friendly alternative in plant protection. However, possible non-target effects of the applied antagonists on ecologically important soil-microbes need to be considered. Therefore, the aim of this study was to analyse the effect of biological control agents (BCAs) on non-target microbes in the field. Whereas the bacterial BCAs Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 were applied to control the pathogen Verticillium dahliae on strawberry and potato, the bacterial strains Pseudomonas trivialis 3Re2-7, P. fluorescens L13-6-12, S. plymuthica 3Re4-18 and the fungal antagonists Trichoderma reesei G1/8 and T. viride G3/2 were introduced to control Rhizoctonia solani on lettuce and potato. As the analysed BCAs belong to different microbial groups like grampositive (HRO-71) and gramnegative (HRO-C48, L13-6-12, 3Re2-7, 3Re4-18) bacteria or the ascomycota (G1/8, G3/2) and originated from different micro-habitats like the rhizosphere or the endorhiza, general conclusion could be drawn from our results. After BCA treatment we did not observe any long-term effect on the plant-associated microbes in any tested pathosystem. Therefore, no sustainable risks could be seen for the indigenous micro-organisms. Our new findings may help to improve the development as well as the registration procedures of future microbial plant protection products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  • Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    Article  PubMed  CAS  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Berg G, Kurze S, Dahl R (1999) Rhizobakterienisolate zur Anwendung gegen phytopathogene Bodenpilze und Verfahren zur Anwendung der Rhizobakterienisolate. (Isolated rhizobacteria for treatment of phytopathogenic fungal diseases). Europäische Patent Nr. 98124694.5

  • Berg G, Lüth P (1999) Das Rhizosphärenisolat Streptomyces rimosus HRO71 zur Pflanzenstärkung und Anwendung gegen phytopathogene Bodenpilze an verschiedenen Kulturpflanzen. Deutsches Patent 199-28-690.6

  • Berg G, Marten P, Minkwitz A, Brückner S, Lüth P (2001) Efficient biological control of fungal plant diseases by Streptomyces sp. DSMZ 12424. IOBC Bulletin 24:9–14

    Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005a) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Smalla K (2005b) Impact of soil type and plant species on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005c) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    Article  PubMed  CAS  Google Scholar 

  • Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, McSpadden Gardener BB (2004) Minimal changes in the rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307–318

    Article  CAS  Google Scholar 

  • Bode E, Guske S (2005) Zulassung und Kommerzialisierung natürlicher Pflanzenschutzmittel. In: Schmutterer H, Huber J (Hrsg.) Natürliche Schädlingsbekämpfungsmittel. Ulmer Eugen Verlag, Stuttgart, 236–249

    Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with abroad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • Chet I (1987) Trichoderma-application, mode of action, and potential as a bio-control of soil-borne plant pathogenic fungi. In: Chet I (ed.) Innovative Approaches to Plant Disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying divers ecological niches. Env Microbiol 5:719–729

    Article  CAS  Google Scholar 

  • Colwell RR, Grimes DJ (2000) Nonculturable microorganisms in the environment. ASM Press, Washington, D.C.

    Google Scholar 

  • Cook RJ (1990) Towards biological control with introduced antagonists. In: Hornby D (ed.) Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 6–10

    Google Scholar 

  • Cook RJ, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, McManus ML, Moore L, Meyer SF, Quimby PC, Stack JP, Vaughn JL (1996) Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol Cont 7:333–351

    Article  Google Scholar 

  • Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C (2006) SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. J. Microbiol Methods, published online doi:10.1016/j.mimet.2006.06.006

  • Dunger W, Fiedler HJ (1997) Methoden der Bodenbiologie. 2., neubearb. Aufl., Gustav Fischer Verlag, Jena

  • Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can J Microbiol 50:811–820

    Article  PubMed  CAS  Google Scholar 

  • Fracchia S, Mujica MT, García-Romera I, García-Garrido JM, Martín J, Ocampo JA, Godeas A (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  PubMed  CAS  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  PubMed  CAS  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  PubMed  CAS  Google Scholar 

  • Govan JRW, Balendreau J, Vandamme P (2000) Burkholderia cepacia – friend and foe. ASM News 66:124–125

    Google Scholar 

  • Grosch R, Lottmann J, Faltin F, Berg G (2005a) Einsatz bakterieller Antagonisten zur Bekämpfung von Krankheiten verursacht durch Rhizoctonia solani. Ges Pfl 57:199–205

    Article  Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005b) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345–353

    Article  PubMed  CAS  Google Scholar 

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Heuser T, Zimmer W (2003) Genus- and isolate-specific real-time PCR quantification of Erwinia on leaf surfaces of English oaks (Quercus robur L.). Curr Microbiol 47:214–219

    Article  PubMed  CAS  Google Scholar 

  • Johansen JE, Binnerup SJ, Lejbolle KB, Mascher F, Sorensen J, Keel C (2002) Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. J Appl Microbiol 93:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Jones EE, Mead A, Whipps JM (2004) Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant Pathol 53:611–620

    Article  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:4433–4440

    Google Scholar 

  • Keel C, Schiner U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Kurze S, Dahl R, Bahl H, Berg G (2001) Biological control of soil-borne pathogens in strawberry by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing plants on beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Lynch JM (1995) Preface: Overview of benefits and risks of biological control introductions. In: Hokkanen HMT, Lynch JM (eds.) Biological Control: Benefits and Risks. Cambridge University Press, xvii–xxii

  • Lynch JM (2002) Resilience of the rhizosphere to anthropogenic disturbance. Biodegradation 13:21–27

    Article  PubMed  CAS  Google Scholar 

  • Mascher F, Hase C, Moënne-Loccoz Y, Défago G (2000) The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 does not promote strain persistence in soil. Appl Environ Microbiol 66:1662–1667

    Article  PubMed  CAS  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1998) Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiol Ecol 27:365–380

    Article  CAS  Google Scholar 

  • Olsson S, Alström S (2000) Characterization of bacteria in soils under barley monoculture and crop rotation. Soil Biol Biochem 32:1443–1451

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indol-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopath 85:1113–1218

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoeck 81:537–547

    Article  CAS  Google Scholar 

  • Ramette A, Tiedje JM (2007) Biogeography An emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microbiol Eco 53:197–207

    Article  Google Scholar 

  • Richtlinie 91/414/EWG des Europäischen Parlaments und des Rates vom 15. Juli 1991 über das Inverkehrbringen von Pflanzenschutzmitteln

  • Rousseau A, Benhamou N, Chet I, Piche Y (1996) Mycoparasitism of the extrametrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86:434–443

    Article  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007a) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Bio Control 52:87–112

    CAS  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007b) Application of two biocontrol agents to potato roots – a risk assessment approach. Proceedings of the IOBC/wprs meeting at Wageningen (The Netherlands), Working Group “Multitrophic Interactions in Soil and Integrated Control” 5–8 June, 2005. Raaijmakers J.M, Sikora RA (eds.) IOBC/WPRS Bulletin Vol. 29:141–146

  • Scherwinski K, Grosch R, Berg G (2007c) Interaction of bacterial Rhizoctonia antagonists in vivo: efficient biocontrol of bottom rot on lettuce and negligible, short-term effects on non-target microbes. FEMS Microbiol Ecol, submitted.

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    PubMed  CAS  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biocontrol. Ecology 77:1965–1974

    Article  Google Scholar 

  • Thirup L, Johansen A, Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiol Ecol 43:383–392

    Article  CAS  PubMed  Google Scholar 

  • Thomashow L, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacy G, Keen NT (eds.) Plant-Microbe Interactions. Chapman & Hall, New York, 187–236

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopath 36:453–483

    Article  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Viebahn M, Doornbos R, Wernars K, Van Loon LC, Smit E and Bakker PAHM (2005) Ascomycetes communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol 7:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Walsh UF, Moënne-Loccoz Y, Tichy H-V, Gardner A, Corkery DM, Lorkhe S, O'Gara F (2003) Residual impact of the biocontrol inoculant Pseudomonas fluorescens F113 on the resident population of rhizobia nodulating a red clover rotation crop. Microbiol Ecol 45:145–155

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141

    Article  CAS  PubMed  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1992) Testing the effect of biological control agents on the formation of vesicular arbuscular mycorrhiza. Plant Soil 147:159–162

    Article  Google Scholar 

Download references

Danksagung

Die Arbeiten wurden durch die Bundesanstalt für Landwirtschaft und Ernährung unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, G., Grosch, R. & Scherwinski, K. Risikofolgeabschätzung für den Einsatz mikrobieller Antagonisten: Gibt es Effekte auf Nichtzielorganismen?. Gesunde Pflanzen 59, 107–117 (2007). https://doi.org/10.1007/s10343-007-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-007-0155-1

Schlüsselwörter

Keywords

Navigation