Skip to main content
Log in

Integer parts of powers of rational numbers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that the sequence [ξ(5/4)n], n=1,2, . . . , where ξ is an arbitrary positive number, contains infinitely many composite numbers. A corresponding result for the sequences [(3/2)n] and [(4/3)n],n=1,2, . . . , was obtained by Forman and Shapiro in 1967. Furthermore, it is shown that there are infinitely many positive integers n such that ([ξ(5/4)n],6006)>1, where 6006=2·3·7·11·13. Similar results are obtained for shifted powers of some other rational numbers. In particular, the same is proved for the sets of integers nearest to ξ(5/3)n and to ξ(7/5)n, n∈ℕ. The corresponding sets of possible divisors are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkauskas, G., Dubickas, A.: Prime and composite numbers as integer parts of powers. Acta Math. Hung. 105, 249–256 (2004)

    Article  Google Scholar 

  2. Baker, R. C., Harman, G.: Primes of the form [cp]. Math. Zeits. 221, 73–81 (1996)

    Google Scholar 

  3. Bugeaud, Y.: Linear mod one transformations and the distribution of fractional parts Acta Arith. 114, 301–311 (2004)

  4. Cass, D.: Integer parts of powers of quadratic units. Proc. Amer. Math. Soc. 101, 610–612 (1987)

    Google Scholar 

  5. Dubickas, A.: Integer parts of powers of Pisot and Salem numbers. Archiv der Math. 79, 252–257 (2002)

    Article  Google Scholar 

  6. Dubickas, A.: Sequences with infinitely many composite numbers. Analytic and Probabilistic Methods in Number Theory, Palanga, 2001 (eds. A. Dubickas, A. Laurinčikas and E. Manstavičius), TEV, Vilnius 2002, pp. 57–60

  7. Flatto, L., Lagarias, J. C., Pollington, A. D.: On the range of fractional parts Acta Arith. 70, 125–147 (1995)

  8. Forman, W., Shapiro, H. N.: An arithmetic property of certain rational powers. Comm. Pure Appl. Math. 20, 561–573 (1967)

    Google Scholar 

  9. Guy, R. K.: Unsolved problems in number theory. Springer–Verlag, New York, 1994

  10. Koksma, J. F.: Ein mengen-theoretischer Satz über Gleichverteilung modulo eins. Compositio Math. 2, 250–258 (1935)

    Google Scholar 

  11. Mahler, K.: An unsolved problem on the powers of 3/2. J. Austral. Math. Soc. 8, 313–321 (1968)

    Google Scholar 

  12. Mills, H. W.: A prime representing function. Bull. Amer. Math. Soc. 53, 604 (1947)

    Google Scholar 

  13. Vaughan, R. C., Wooley, T. D.: Waring's problem: a survey. Number theory for the millennium, III (Urbana, IL, 2000), A. K. Peters, Natick, MA, 301–340 (2002)

  14. Vijayaraghavan, T.: On the fractional parts of the powers of a number. J. London Math. Soc. 15, 159–160 (1940)

    Google Scholar 

  15. Wright, E. M.: A prime representing function. Amer. Math. Monthly, 58, 616–618 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Dubickas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubickas, A., Novikas, A. Integer parts of powers of rational numbers. Math. Z. 251, 635–648 (2005). https://doi.org/10.1007/s00209-005-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-005-0827-4

Mathematics Subject Classification (2000)

Navigation