Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1395))
839 Accesses
This is a preview of subscription content, log in via an institution to check access.
Tax calculation will be finalised at checkout
Purchases are for personal use only
Unable to display preview. Download preview PDF.
P. Allatt and J.B. Slater, “Congruences on some special modular forms,” J. London Math. Soc. (2) 17 (1978), 380–392.
G.E. Andrews, “The fifth and seventh order mock theta functions,” Trans. Amer. Math. Soc. 293 (1986), 113–134.
G.E. Andrews, “Questions and conjectures in partition theory,” Amer. Math. Monthly 93 (1986), 708–711.
G.E. Andrews, F.J. Dyson and D. Hickerson, “Partitions and indefinite quadratic forms,” Invent. Math. 91 (1988), 391–407.
A.O.L. Atkin, “Ramanujan congruences for p−k(n),” Canad. J. Math. 20 (1968), 67–78.
H. Cohen, “Sur une fausse forme modulaire lieé à des identités de Ramanujan et Andrews,” Proc. Int. Conf. on Number Theory, Laval Univ., Quebec, 1987.
H. Cohen, “q-identities for Maass waveforms,” Invent. Math. 91 (1988), 409–422.
P. Deligne and J.-P. Serre, “Formes modulaires de poids 1,” Ann. Sci. Ecole Norm. Sup. 7 (1974), 507–530.
G. Ligozat, “Courbes modulaires de genre 1,” Bull. Soc. Math. France, Mém. 43 (1975), 1–80.
M. Newman, “Construction and application of a class of modular functions (II),” Proc. London Math. Soc. (3), 9 (1959), 373–387.
M. Newman, “Modular forms whose coefficients possess multiplicative properties,” Ann. Math. 70 (1959), 478–489.
M. Newman, “Weighted restricted partitions,” Acta Arith. 5 (1959), 371–379.
M. Newman, “Modular forms whose coefficients possess multiplicative properties, II,” Ann. Math. 75 (1962), 242–250.
M. Newman, “Modular functions revisited,” Springer Lect. Notes in Math. 899 (1981), 396–421.
K. Ribet, “Galois representations attached to eigenforms with Nebentypus,” Springer Lect. Notes in Math. 601 (1977), 17–52.
J.-P. Serre, “Formes modulaires et fonctions zêta p-adiques,” Springer Lect. Notes in Math. 350 (1973), 191–268.
J.-P. Serre, “Modular forms of weight one and Galois representations,” Algebraic Number Fields (edit. A.Fröhlich), Academic Press (1977), 193–268.
J.-P. Serre, “Quelques applications du théorème de densité de Chebotarev,” Publ. Math. I.H.E.S. 54 (1981), 123–201.
J.-P. Serre, “Sur la lacunarité des puissances de ν,” Glasgow Math. J. 27 (1985), 203–221.
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press (1971), 65–89.
H.P.F. Swinnerton-Dyer, “On l-adic representations and congruences for coefficients of modular forms,” Springer Lect. Notes in Math. 350 (1973), 1–55.
H.P.F. Swinnerton-Dyer, “On l-adic representations and congruences for coefficients of modular forms II,” Springer Lect. Notes in Math. 601 (1977), 63–90.
University of California, Los Angeles
Basil Gordon & Dale Sinor
Quadratron Corporation, USA
Basil Gordon & Dale Sinor
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
© 1989 Springer-Verlag
Gordon, B., Sinor, D. (1989). Multiplicative properties of η-products. In: Alladi, K. (eds) Number Theory, Madras 1987. Lecture Notes in Mathematics, vol 1395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086404
DOI: https://doi.org/10.1007/BFb0086404
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51595-1
Online ISBN: 978-3-540-46681-9
eBook Packages: Springer Book Archive
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative