Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. I. Borewicz, I. R. Šafarevič, Zahlentheorie, Birkhäuser Verlag. Basel-Stuttgart 1966.

    MATH  Google Scholar 

  2. E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo 1985.

    MATH  Google Scholar 

  3. G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 3rd ed. 1954.

    MATH  Google Scholar 

  4. E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 3. Aufl. 1983

  5. M. Knopp, Modular functions in analytic number theory, Markham Publ. Chicago 1970.

    MATH  Google Scholar 

  6. G. Köhler, Theta series on the Hecke groups\(G(\sqrt 2 )\) and\((G\sqrt 3 )\), Math Z.197 (1988) 69–96.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. H. van Lint, Hecke operators and Euler products, Thesis, Utrecht 1957.

  8. D. A. Marcus, Number fields, Springer-Verlag, New York-Heidelberg-Berlin 1977.

    MATH  Google Scholar 

  9. H. Petersson, Modulfunktionen und quadratische Formen, Springer Verlag, Berlin-Heidelberg-New York 1982.

    MATH  Google Scholar 

  10. H. Petersson, Über gewisse Dirichlet-Reihen mit Eulerscher Produktzerlegung, Math Z.189 (1985) 273–288.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. A. Rankin, Modular forms and functions, Cambridge Univ. Press, Cambridge 1977.

    MATH  Google Scholar 

  12. B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann.116 (1939) 511–523.

    Article  MathSciNet  Google Scholar 

  13. B. Schoeneberg, Über den Zusammenhang der Eisensteinschen Reihen und Thetareihen mit der Diskriminate der elliptischen Funktionen, Math. Ann.126 (1953) 177–184.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. P. Serre, Sur la lacunarité des puissances de η, Glasgow Math. J.27 (1985) 203–221.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Köhler, G. Theta series on the theta group. Abh.Math.Semin.Univ.Hambg. 58, 15–45 (1988). https://doi.org/10.1007/BF02941367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941367

Keywords

Navigation