Skip to main content
Log in

Series and Monte Carlo study of high-dimensional Ising models

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Ising models in high dimensions are used to compare high-temperature series expansions with Monte Carlo simulations. Simulations of the magnetization on four-, six-, and seven-dimensional hypercubic lattices give consistent values of the critical temperature from both equilibrium and nonequilibrium data ford=6 and 7. We tabulate 15 terms of series expansions for the susceptibility for generald and giveJ/k B T c =0.092295 (3) and 0.077706 (2) ford=6 and 7. In contrast to five dimensions, where earlier series found nonanalytic scaling corrections, for d=6 and 7 the leading scaling correction may be analytic inT-T c . In most cases these expansions gave more accurate results than these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. E. Fisher and D. S. Gaunt,Phys. Rev. 133A:224 (1964).

    Google Scholar 

  2. A. J. Guttmann,J. Phys. A 14:233 (1981).

    Google Scholar 

  3. J. Adler and D. Stauffer,Physica A 181:396 (1992).

    Google Scholar 

  4. C. Münkel, D. W. Heermann, J. Adler, M. Gofman, and D. Stauffer,Physica A 193:540 (1993).

    Google Scholar 

  5. R. J. de Boer, L. A. Segel, and A. S. Perelson,J. Theor. Biol. 155:295 (1992); D. Stauffer and M. Sahimi,Int. J. Mod. Phys. C 4:40 (1993).

    Google Scholar 

  6. K. Binder, ed.,Applications of the Monte Carlo Method in Statistical Physics (Springer-Verlag, Berlin, 1987); D. Stauffer, F. W. Hehl, N. Ito, V. Winkelmann, and J. G. Zabolitzky,Computer Simulation and Computer Algebra, 3rd ed. (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  7. D. Stauffer, Simulation Workshop, Athens, Georgia (February, 1993).

  8. N. Ito,Physica A 192:604 (1993), and preprint; H. O. Heuer,J. Phys. A 25:L567 (1992);26:L333 and L341 (1993).

    Google Scholar 

  9. T. S. Ray,J. Stat. Phys. 62:463 (1991); T. Ala-Nissila, T. Hjelt, J. M. Kosterlitz, and O. Venalainen, preprint (1993).

    Google Scholar 

  10. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977), Section IVA; O.G. Mouritsen and S. J. Knak-Jensen,J. Phys. A 12:L339 (1979); B. K. Chakrabarti, H. G. Baumgärtel, and D. Stauffer,Z. Phys. B 44:333 (1981); R. Kenna and C. B. Lang, preprint (1993).

    Google Scholar 

  11. M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwartz, preprint (1993).

  12. A. B. Harris,Phys. Rev. B 26:337 (1982); A. B. Harris and Y. Meir,Phys. Rev. B 36:1840 (1987).

    Google Scholar 

  13. J. Adler, M. Moshe, and V. Privman,Phys. Rev. B 26:1411 (1982); J. Adler, M. Moshe, and V. Privman,J. Phys. A 14:L363 (1981); J. Adler, M. Moshe, and V. Privman, inAnnals of the Israel Physical Society, Vol. 3, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, London, 1983).

    Google Scholar 

  14. J. Adler, Y. Meir, A. Aharony, and A. B. Haris,Phys. Rev. B 41:9183 (1990).

    Google Scholar 

  15. L. Klein, J. Adler, A. Aharony, A. B. Harris, and Y. Meir,Phys. Rev. B 43:11249 (1991).

    Google Scholar 

  16. J. Adler, I. K. Chang, and S. Shapiro, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gofman, M., Adler, J., Aharony, A. et al. Series and Monte Carlo study of high-dimensional Ising models. J Stat Phys 71, 1221–1230 (1993). https://doi.org/10.1007/BF01049970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049970

Key words

Navigation