Skip to main content

Best Approximation of Ruspini Partitions in Gödel Logic

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Abstract

A Ruspini partition is a finite family of fuzzy sets {f 1, ..., f n }, f i : [0, 1] →[0, 1], such that \(\sum^n_{i=1} f_i(x) = 1\) for all x ∈ [0, 1]. We analyze such partitions in the language of Gödel logic. Our main result identifies the precise degree to which the Ruspini condition is expressible in this language, and yields inter alia a constructive procedure to axiomatize a given Ruspini partition by a theory in Gödel logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguzzoli, S., D’Antona, O.M., Marra, V.: Algorithms in propositional Gödel logic (in preparation)

    Google Scholar 

  • Aguzzoli, S., Gerla, B., Manara, C.: Poset representation for Gödel and Nilpotent Minimum logics. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 662–674. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Logic 38(7), 461–489 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Codara, P., D’Antona, O.M., Marra, V.: Propositional Gödel logic and Delannoy paths. In: Proceedings of Fuzz-IEEE 2007 (to appear)

    Google Scholar 

  • D’Antona, O.M., Marra, V.: Computing coproducts of finitely presented Gödel algebras. Ann. Pure Appl. Logic 142(1-3), 202–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gottwald, S.: A treatise on many-valued logics. In: Studies in Logic and Computation, vol. 9. Research Studies Press Ltd., Baldock (2001)

    Google Scholar 

  • Hájek, P.: Metamathematics of fuzzy logic. In: Trends in Logic—Studia Logica Library, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  • Rourke, C.P., Sanderson, B.J.: Introduction to piecewise-linear topology, Springer Study edn. Springer, Berlin (1982) (reprint)

    MATH  Google Scholar 

  • Ruspini, E.H.: A new approach to clustering. Information and Control 15, 22–32 (1969)

    Article  MATH  Google Scholar 

  • Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2006), http://www.research.att.com/~njas/sequences/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Codara, P., D’Antona, O.M., Marra, V. (2007). Best Approximation of Ruspini Partitions in Gödel Logic. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation