Skip to main content

Space-Efficient Algorithms for Computing the Convex Hull of a Simple Polygonal Line in Linear Time

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

Abstract

We present space-efficient algorithms for computing the convex hull of a simple polygonal line in-place, in linear time. It turns out that the problem is as hard as stable partition, i.e., if there were a truly simple solution then stable partition would also have a truly simple solution, and vice versa. Nevertheless, we present a simple self-contained solution that uses O(log n) space, and indicate how to improve it to O(1) space with the same techniques used for stable partition. If the points inside the convex hull can be discarded, then there is a truly simple solution that uses a single call to stable partition, and even that call can be spared if only extreme points are desired (and not their order). If the polygonal line is closed, then the problem admits a very simple solution which does not call for stable partitioning at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloupis, G.: A History of Linear-time Convex Hull Algorithms for Simple Polygons, http://cgm.cs.mcgill.ca/~athens/cs601/

  2. Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. To appear in Theoretical Computer Science (2002); Special issue of selected papers from Rajsbaum, S. (ed.): LATIN 2002. LNCS, vol. 2286. Springer, Heidelberg (2002)

    Google Scholar 

  4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Chen, E.Y., Chan, T.M.: A Space-Efficient Algorithm for Segment Intersection. In: Proc. 15th Canadian Conference on Computational Geometry, pp. 68–71 (2003)

    Google Scholar 

  6. Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically efficient in-place merging. Theoretical Computer Science 237, 159–181 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Katajainen, J., Pasanen, T.: Stable minimum space partitioning in linear time. BIT 32, 580–585 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Katajainen, J., Pasanen, T.: Sorting multiset stably in minimum space. Acta Informatica 31, 410–421 (1994)

    Article  MathSciNet  Google Scholar 

  9. Katajainen, J., Pasanen, T., Teuhola, J.: Practical in-place mergesort. Nordic Journal of Computing 3, 27–40 (1996)

    MathSciNet  Google Scholar 

  10. Lee, D.T.: On finding the convex hull of a simple polygon. International Journal of Computing & Information Sciences 12(2), 87–98 (1983)

    Article  MATH  Google Scholar 

  11. Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Munro, J.I., Raman, V., Salowe, J.S.: Stable in Situ Sorting and Minimum Data Movement. BIT 30(2), 220–234 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brönnimann, H., Chan, T.M. (2004). Space-Efficient Algorithms for Computing the Convex Hull of a Simple Polygonal Line in Linear Time. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation