Skip to main content

Experimental computation as an ontological game changer: The impact of modern mathematical computation tools on the ontology of mathematics

  • Chapter
Mathematics, Substance and Surmise

Abstract

Robust, concrete and abstract, mathematical computation and inference on the scale now becoming possible should change the discourse about many matters mathematical. These include: what mathematics is, how we know something, how we persuade each other, what suffices as a proof, the infinite, mathematical discovery or invention, and other such issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We borrow heavily from two of our recent prior articles [9] (‘pure’) and [8] (‘applied’). They are reused with the permission of the American Mathematical Society and of Princeton University Press, respectively.

  2. 2.

    Most of the functionality of the ISC, which is now housed at http://carma-lx1.newcastle.edu.au:8087, is now built into the “identify” function of Maple starting with version 9.5. For example, the Maple command identify(4.45033263602792) returns \(\sqrt{3} + e\), meaning that the decimal value given is simply approximated by \(\sqrt{3} + e\).

  3. 3.

    The difficulty of comparing timings and the growing inability to look under the hood (bonnet) in computer packages, either by design or through user ignorance, means all such comparisons should be taken with a grain of salt.

  4. 4.

    See http://fredrikj.net/blog/2014/03/new-partition-function-record/ for a lovely description of the computation of p(1020), which has over 11 billion digits and required knowing π to similar accuracy.

  5. 5.

    See “12.1 Trillion Digits of Pi And we’re out of disk space…” at http://www.numberworld.org/misc_runs/pi-12t/.

  6. 6.

    See http://en.wikipedia.org/wiki/CUDA.

  7. 7.

    See www.karrels.org/pi/.

  8. 8.

    He reported in December 2012 at an ICERM workshop that this was nearing completion.

  9. 9.

    There are differing accounts of how this principle was discovered; we rely on the first-person account at http://www.gravityassist.com/IAF1/IAF1.pdf. Additional information on “slingshot magic” is given at http://www.gravityassist.com/ and http://www2.jpl.nasa.gov/basics/grav/primer.php.

  10. 10.

    Various movies can be found on line. For example, http://dmabrams.esam.northwestern.edu/pubs/ngeo-video1.mov and http://dmabrams.esam.northwestern.edu/pubs/ngeo-video2.mov show two for groundwater flow.

  11. 11.

    When the set A is non-convex the projection P A (x) may be a set and we must instead select some \(y \in P_{A}(x)\).

  12. 12.

    Interatomic distances below 6Å typically constitute less than 8% of the total distances between atoms in a protein.

  13. 13.

    After speeding up the computation by a factor of ten, and terminating when the decibel error was less than − 100, this anomaly disappeared.

  14. 14.

    The first 3,000 steps of the 1PTQ reconstruction are available as a movie at http://carma.newcastle.edu.au/DRmethods/1PTQ.html.

References

  1. D. M. Abrams and S. H. Strogatz, “Chimera states in a ring of nonlocally coupled oscillators,” Intl. J. of Bifur. and Chaos, vol. 16 (2006), 21–37.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Aragon, J. M. Borwein and M. Tam, “Douglas-Rachford feasibility methods for matrix completion problems.” ANZIAM Journal, July 2014, http://arxiv.org/abs/1308.4243.

  3. M. Atiyah, et al, “Responses to ‘Theoretical Mathematics: Toward a Cultural Synthesis of Mathematics and Theoretical Physics,’ by A. Jaffe and F. Quinn,” Bulletin of the American Mathematical Society, vol. 30, no. 2 (Apr 1994), 178–207.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Avigad, “Computers in mathematical inquiry,” in The Philosophy of Mathematical Practice, P. Mancuso ed., Oxford University Press, 2008, 302–316.

    Book  Google Scholar 

  5. D. H. Bailey, R. Barrio and J. M. Borwein, “High-precision computation: Mathematical physics and dynamics,” Appl. Math. and Comp., vol. 218 (2012), 10106–10121.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. H. Bailey and J. M. Borwein, “Computation and theory of extended Mordell-Tornheim-Witten sums. Part II,” Journal of Approximation Theory (special issue in honour of Dick Askey turning 80), vol. 189 (2015), 115–140. DOI: http://dx.doi.org/10.1016/j.jat.2014.10.004.

  7. D. H. Bailey and J. M. Borwein, “Computer-assisted discovery and proof.” Tapas in Experimental Mathematics, 21–52, in Contemporary Mathematics, vol. 457, American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  8. D. H. Bailey and J. M. Borwein, “Experimental Applied Mathematics.” As a Final Perspective in the Princeton Companion to Applied Mathematics. Entry VIII.6, 925–932, 2015.

    Google Scholar 

  9. D. H. Bailey and J. M. Borwein, “Exploratory experimentation and computation,” Notices of the AMS, vol. 58 (Nov 2011), 1410–19.

    MATH  MathSciNet  Google Scholar 

  10. D. H. Bailey and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” J. Comp. Science, vol. 3 (2012), 77–86.

    Article  Google Scholar 

  11. D. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke and V. Moll, Experimental Mathematics in Action, A K Peters, Natick, MA, 2007.

    MATH  Google Scholar 

  12. D. Bailey, J. Borwein, R. Crandall and M. Rose, “Expectations on Fractal Sets.” Applied Mathematics and Computation. vol. 220 (Sept), 695–721. DOI: http://dx.doi.org/10.1016/j.amc.2013.06.078.

  13. D. H. Bailey, J. M. Borwein and A. D. Kaiser, “Automated simplification of large symbolic expressions,” Journal of Symbolic Computation, vol. 60 (Jan 2014), 120–136, http://www.sciencedirect.com/science/article/pii/S074771711300117X.

  14. D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein,“Ten Problems in Experimental Mathematics,” American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), 481–409.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. H. Bailey, J. M. Borwein, M. Lopez de Prado and Q. J. Zhu, “Pseudo-mathematics and financial charlatanism: The effects of backtest over fitting on out-of-sample performance,” Notices of the American Mathematical Society, May 2014, http://ssrn.com/abstract=2308659.

  16. D. H. Bailey, J. M. Borwein, M. Lopez de Prado and Q. J. Zhu, “The probability of backtest overfitting,” Financial Mathematics, to appear, March 2015. http://ssrn.com/abstract=2326253.

  17. D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, “The Computation of Previously Inaccessible Digits of π 2 and Catalan’s Constant,” Notices of the American Mathematical Society, vol. 60 (2013), no. 7, 844–854.

    Google Scholar 

  18. D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), 903–913.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Baillie, D. Borwein, and J. Borwein, “Some sinc sums and integrals,” American Math. Monthly, vol. 115 (2008), no. 10, 888–901.

    Google Scholar 

  20. J. M. Borwein, “The Experimental Mathematician: The Pleasure of Discovery and the Role of Proof,” International Journal of Computers for Mathematical Learning, 10 (2005), 75–108. CECM Preprint 02:178; 264, http://docserver.carma.newcastle.edu.au/264.

  21. J. M. Borwein, “Exploratory Experimentation: Digitally-assisted Discovery and Proof,” in ICMI Study 19: On Proof and Proving in Mathematics Education, G. Hanna and M. de Villiers, eds., New ICMI Study Series, 15, Springer-Verlag, 2012, http://www.carma.newcastle.edu.au/jon/icmi19-full.pdf.

  22. J. M. Borwein, “Implications of Experimental Mathematics for the Philosophy of Mathematics,” Ch. 2 (33–61) and cover image in Proof and Other Dilemmas: Mathematics and Philosophy, Bonnie Gold and Roger Simons, eds., MAA Spectrum Series, July 2008. D-drive Preprint 280, http://www.carma.newcastle.edu.au/jon/implications.pdf.

  23. J. M. Borwein, “The SIAM 100 Digits Challenge,” Extended review in the Mathematical Intelligencer, vol. 27 (2005), 40–48.

    Google Scholar 

  24. J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A K Peters, second edition, 2008.

    Google Scholar 

  25. J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Roads to Discovery, A K Peters, Natick, MA, 2004.

    Google Scholar 

  26. J. M. Borwein, O-Y. Chan and R. E. Crandall, “Higher-dimensional box integrals,” Experimental Mathematics, vol. 19 (2010), 431–435.

    Google Scholar 

  27. J. M. Borwein, C. Maitland and M. Skerritt, “Computation of an improved lower bound to Giuga’s primality conjecture,” Integers 13 (2013) #A67, http://www.westga.edu/~integers/cgi-bin/get.cgi.

  28. J. M. Borwein, I. J. Zucker and J. Boersma, “The evaluation of character Euler double sums,” Ramanujan Journal, vol. 15 (2008), 377–405.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. E. Crandall, “Theory of ROOF Walks,” 2007, http://www.perfscipress.com/papers/ROOF11_psipress.pdf.

  30. D. Easley, M. Lopez de Prado and M. O’Hara, High-Frequency Trading, Risk Books, London, 2013.

    Google Scholar 

  31. L. R. Franklin, “Exploratory Experiments,” Philosophy of Science, vol. 72 (2005), 888–899.

    Article  Google Scholar 

  32. M. Giaquinto, Visual Thinking in Mathematics. An Epistemological Study, Oxford University Press, New York, 2007.

    Google Scholar 

  33. J. Gleick, Chaos: The Making of a New Science, Viking Penguin, New York, 1987.

    MATH  Google Scholar 

  34. J. Gravner and D. Griffeath, “Modeling snow crystal growth: A three-dimensional mesoscopic approach,” Phys. Rev. E, vol. 79 (2009), 011601.

    Article  Google Scholar 

  35. J. Guillera, “Hypergeometric identities for 10 extended Ramanujan-type series,” Ramanujan Journal, vol. 15 (2008), 219–234.

    Article  MATH  MathSciNet  Google Scholar 

  36. T. C. Hales, “Formal Proof,” Notices of the American Mathematical Society, vol. 55, no. 11 (Dec. 2008), 1370–1380.

    MATH  MathSciNet  Google Scholar 

  37. Paul Halmos, Celebrating 50 Years of Mathematics, Springer, 1991.

    Google Scholar 

  38. G. Hanna and M. de Villiers (Eds.), On Proof and Proving in Mathematics Education, the 19th ICMI Study, New ICMI Study Series, 15, Springer-Verlag, 2012.

    Google Scholar 

  39. A. Jaffe and F. Quinn, “‘Theoretical Mathematics’: Toward a Cultural synthesis of Mathematics and Theoretical Physics,” Bulletin of the American Mathematical Society, vol. 29, no. 1 (Jul 1993), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  40. Mark Joshi, The Concepts and Practice of Mathematical Finance, Cambridge University Press, 2008.

    MATH  Google Scholar 

  41. J. E. Littlewood, A Mathematician’s Miscellany, Methuen, London, 1953, reprinted by Cambridge University Press, 1986.

    Google Scholar 

  42. M. Livio, Is God a Mathematician?, Simon and Schuster, New York, 2009.

    Google Scholar 

  43. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1982.

    MATH  Google Scholar 

  44. M. Minovitch, “A method for determining interplanetary free-fall reconnaissance trajectories,” JPL Tech. Memo TM-312-130, (23 Aug 1961), 38–44.

    Google Scholar 

  45. Erik Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals,” http://arxiv.org/abs/1403.3385.

  46. M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, A K Peters, Natick, MA, 1996.

    MATH  Google Scholar 

  47. G. Pólya, Mathematical discovery: On understanding, learning, and teaching problem solving, (Combined Edition), New York, John Wiley and Sons, New York, 1981.

    MATH  Google Scholar 

  48. R. Preston, “The Mountains of Pi,” New Yorker, 2 Mar 1992, http://www.newyorker.com/archive/content/articles/050411fr_archive01.

  49. H. K. Sørenson, “Exploratory experimentation in experimental mathematics: A glimpse at the PSLQ algorithm,” in B. Lowe, ed., Philosophy of Mathematics: Sociological Aspects and Mathematical Practice, Thomas Muller, London, 20–10, 341–360.

    Google Scholar 

  50. V. Stodden, D. H. Bailey, J. M. Borwein, R. J. LeVeque, W. Rider and W. Stein, “Setting the default to reproducible: Reproducibility in computational and experimental mathematics,” manuscript, 2 Feb 2013, http://www.davidhbailey.com/dhbpapers/icerm-report.pdf.

  51. H. S. Wilf, “Mathematics: An experimental science,” The Princeton Companion to Mathematics, Princeton University Press, 2008.

    Google Scholar 

  52. H. S. Wilf and D. Zeilberger, “Rational Functions Certify Combinatorial Identities,” Journal of the American Mathematical Society, vol. 3 (1990), 147–158.

    Article  MATH  MathSciNet  Google Scholar 

  53. S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, 2002.

    MATH  Google Scholar 

  54. W. Zudilin, “Ramanujan-type formulae for 1∕π: A second wind,” 19 May 2008, http://arxiv.org/abs/0712.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Bailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bailey, D.H., Borwein, J.M. (2015). Experimental computation as an ontological game changer: The impact of modern mathematical computation tools on the ontology of mathematics. In: Davis, E., Davis, P. (eds) Mathematics, Substance and Surmise. Springer, Cham. https://doi.org/10.1007/978-3-319-21473-3_3

Download citation

Publish with us

Policies and ethics

Navigation