Skip to main content

Maximally Even Tilings

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

  • 1233 Accesses

Abstract

Rhythmic tiling canons tend to feature highly regular, periodic rhythms which, from a musical standpoint, can be quite monotonous and lacking in character. Allowing for “holes”, we can compose “partial tiling canons” that feature more irregular/interesting rhythms. In this paper, we will investigate the construction of partial tiling canons in which the composite rhythm is maximally even.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.7 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { if(buybox) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Math. Music 3(2) (2009). https://doi.org/10.1080/17459730903086140

  2. Perspect. New Music 49(2) (2011). http://www.perspectivesofnewmusic.org/TOC492.pdf

  3. A102562 (2014). http://oeis.org/A102562. Accessed 24 Nov 2018

  4. Amiot, E.: New perspectives on rhythmic canons and the spectral conjecture. J. Math. Music 3(2), 71–84 (2009). https://doi.org/10.1080/17459730903040709

    Article  MathSciNet  MATH  Google Scholar 

  5. Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35(1/2), 93–173 (1991). http://www.jstor.org/stable/843811

    Article  Google Scholar 

  6. Demaine, E.D., et al.: The distance geometry of music. Comput. Geom. 42(5), 429–454 (2009). https://doi.org/10.1016/j.comgeo.2008.04.005. http://www.sciencedirect.com/science/article/pii/S0925772108001156. Special Issue on the Canadian Conference on Computational Geometry (CCCG 2005and CCCG 2006)

    Article  MathSciNet  Google Scholar 

  7. Kolountzakis, M.N., Matolcsi, M.: Algorithms for translational tiling. J. Math. Music 3(2), 85–97 (2009). https://doi.org/10.1080/17459730903040899

    Article  MathSciNet  MATH  Google Scholar 

  8. Vuza, D.T.: Supplementary sets and regular complementary unending canons (part one). Perspect. New Music 29, 22–49 (1991)

    Article  Google Scholar 

  9. Vuza, D.T.: Supplementary sets and regular complementary unending canons (part three). Perspect. New Music 30, 102–124 (1992)

    Article  Google Scholar 

  10. Vuza, D.T.: Supplementary sets and regular complementary unending canons (part two). Perspect. New Music 30, 184–207 (1992)

    Article  Google Scholar 

  11. Vuza, D.T.: Supplementary sets and regular complementary unending canons (part four). Perspect. New Music 31, 270–305 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Kastine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kastine, J. (2019). Maximally Even Tilings. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation