D. Armstrong, Hyperplane arrangements and diagonal harmonics, in 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp. 39–50. Discrete Mathematics and Theoretical Computer Science (2011)
Google Scholar
D. Armstrong, B. Rhoades, The Shi arrangement and the Ish arrangement. Trans. Am. Math. Soc. 364(3), 1509–1528 (2012)
Article
MathSciNet
Google Scholar
D. Armstrong, N.A. Loehr, G.S. Warrington, Sweep maps: a continuous family of sorting algorithms. Adv. Math. 284, 159–185 (2015)
Article
MathSciNet
Google Scholar
S. Assaf, Toward the Schur expansion of Macdonald polynomials. Electron. J. Combin. 25(2), Paper 2.44 (2018)
Google Scholar
C.A. Athanasiadis, S. Linusson, A simple bijection for the regions of the Shi arrangement of hyperplanes. Discret. Math. 204(1–3), 27–39 (1999)
Article
MathSciNet
Google Scholar
F. Bergeron, Multivariate diagonal coinvariant spaces for complex reflection groups. Adv. Math. 239, 97–108 (2013). ISSN 0001-8708
Article
MathSciNet
Google Scholar
F. Bergeron, Algebraic Combinatorics and Coinvariant Spaces (CRC Press, Boca Raton, 2009)
Book
Google Scholar
F. Bergeron, L.-F. Préville-Ratelle, Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb. 3(3), 317–341 (2012)
MathSciNet
MATH
Google Scholar
F. Bergeron, A. Garsia, M. Haiman, G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. 6(3), 363–420 (1999)
MathSciNet
MATH
Google Scholar
F. Bergeron, A. Garsia, E.S. Leven, G. Xin, Compositional (km, kn)-shuffle conjectures. Int. Math. Res. Not. 2016(14), 4229–4270 (2015)
Article
MathSciNet
Google Scholar
F. Bergeron, A. Garsia, E.S. Leven, G. Xin, Some remarkable new plethystic operators in the theory of Macdonald polynomials. J. Comb. 7(4), 671–714 (2016)
MathSciNet
MATH
Google Scholar
E. Carlsson, A. Mellit, A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)
Article
MathSciNet
Google Scholar
D. Foata, J. Riordan, Mappings of acyclic and parking functions. Aequ. Math. 10(1), 10–22 (1974)
Article
MathSciNet
Google Scholar
A.M. Garsia, M. Haiman, Some natural bigraded \(S_n\)-modules and q, t-Kostka coefficients. Electron. J. Combin. 3 (1996)
Google Scholar
A. Garsia, J. Haglund, A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. 98(8), 4313–4316 (2001)
Article
MathSciNet
Google Scholar
A.M. Garsia, J. Haglund, A proof of the q, t-Catalan positivity conjecture. Discret. Math. 256(3), 677–717 (2002)
Article
MathSciNet
Google Scholar
A.M. Garsia, M. Haiman, A graded representation model for Macdonald’s polynomials. Proc. Natl. Acad. Sci. 90(8), 3607–3610 (1993)
Article
MathSciNet
Google Scholar
A.M. Garsia, G. Xin, M. Zabrocki, Hall-Littlewood operators in the theory of parking functions and diagonal harmonics. Int. Math. Res. Not. 2012(6), 1264–1299 (2011)
Article
MathSciNet
Google Scholar
A.M. Garsia, G. Xin, M. Zabrocki, A three shuffle case of the compositional parking function conjecture. J. Comb. Theory Ser. A 123(1), 202–238 (2014)
Article
MathSciNet
Google Scholar
E. Gorsky, A. Negut, Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. (9) 104(3), 403–435 (2015)
Article
MathSciNet
Google Scholar
E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)
Article
MathSciNet
Google Scholar
E. Gorsky, M. Mazin, M. Vazirani, Affine permutations and rational slope parking functions. Trans. Am. Math. Soc. 368(12), 8403–8445 (2016)
Article
MathSciNet
Google Scholar
J. Haglund, The combinatorics of knot invariants arising from the study of Macdonald polynomials. Recent Trends in Combinatorics (Springer, Berlin, 2016), pp. 579–600
Chapter
Google Scholar
J. Haglund, J. Morse, M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path. Canad. J. Math. 64(4), 822–844 (2012). ISSN 0008-414X
Article
MathSciNet
Google Scholar
J. Haglund, G. Xin, Lecture notes on the Carlsson-Mellit proof of the shuffle conjecture (2017), arXiv:1705.11064
J. Haglund, A proof of the q, t-Schröder conjecture. Int. Math. Res. Not. 2004(11), 525–560 (2004)
Article
Google Scholar
J. Haglund, The genesis of the Macdonald polynomial statistics. Séminaire Lotharingien de Combinatoire 54, B54Ao (2006)
MathSciNet
MATH
Google Scholar
J. Haglund, The q, t-Catalan Numbers and the Space of Diagonal Harmonics, vol. 41 (American Mathematical Society, Providence, 2008)
MATH
Google Scholar
J. Haglund, N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics. Discret. Math. 298(1), 189–204 (2005)
Article
MathSciNet
Google Scholar
J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18(3), 735–761 (2005)
Article
MathSciNet
Google Scholar
J. Haglund, J. Remmel, A.T. Wilson, The delta conjecture. Trans. Am. Math. Soc. 370(6), 4029–4057 (2018)
Article
MathSciNet
Google Scholar
M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)
Article
MathSciNet
Google Scholar
M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Inventiones Math. 149(2), 371–407 (2002)
Article
MathSciNet
Google Scholar
A. Hicks, E. Leven, A simpler formula for the number of diagonal inversions of an \((m, n)\)-parking function and a returning fermionic formula. Discrete Math. 338(3), 48–65 (2015)
Google Scholar
A.S. Hicks, Two parking function bijections: a sharpening of the q, t-Catalan and Shröder theorems. Int. Math. Res. Not. 2012(13), 3064–3088 (2011)
Article
Google Scholar
T. Hikita, Affine Springer fibers of type \(A\) and combinatorics of diagonal coinvariants. Adv. Math. 263, 88–122 (2014)
Google Scholar
D.E. Knuth, Linear probing and graphs. Algorithmica 22(4), 561–568 (1998)
Article
MathSciNet
Google Scholar
A.G. Konheim, B. Weiss, An occupancy discipline and applications. SIAM J. Appl. Math. 14(6), 1266–1274 (1966)
Article
Google Scholar
A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)
Article
MathSciNet
Google Scholar
B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials. Combinatorial Methods in Representation Theory, Advanced Studies in Pure Mathematics, vol. 28 (Citeseer, 1998)
Google Scholar
N.A. Loehr, G.S. Warrington, Nested quantum Dyck paths and \(\nabla (s_\lambda )\). Int. Math. Res. Not. 5 (2008)
Google Scholar
N.A. Loehr, Combinatorics of q, t-parking functions. Adv. Appl. Math. 34(2), 408–425 (2005)
Article
MathSciNet
Google Scholar
N.A. Loehr, J.B. Remmel, A computational and combinatorial exposé of plethystic calculus. J. Algebr. Comb. 33(2), 163–198 (2011)
Article
Google Scholar
I.G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, Oxford, 1998)
MATH
Google Scholar
A. Mellit, Toric braids and \((m, n) \)-parking functions (2016), arXiv:1604.07456
A. Oblomkov, V. Shende, The Hilbert scheme of a plane curve singularity and the homfly polynomial of its link. Duke Math. J. 161(7), 1277–1303 (2012)
Article
MathSciNet
Google Scholar
R. Pyke, The supremum and infimum of the poisson process. Ann. Math. Stat. 30(2), 568–576 (1959)
Article
MathSciNet
Google Scholar
B. Rhoades, A.T. Wilson, Tail positive words and generalized coinvariant algebras. Electron. J. Combin. 24(3), Paper 3.21, 29 (2017)
Google Scholar
B. Rhoades, Ordered set partition statistics and the delta conjecture. J. Comb. Theory Ser. A 154, 172–217 (2018)
Article
MathSciNet
Google Scholar
M. Romero, The delta conjecture at \(q=1\). Trans. Am. Math. Soc. 369(10), 7509–7530 (2017)
Google Scholar
B.E. Sagan, The Symmetric Group. Volume 203 of Graduate Texts in Mathematics (Springer, New York, 2001), 2nd edn. Representations, combinatorial algorithms, and symmetric functions
Google Scholar
A. Schilling, M. Shimozono, D. White, Branching formula for q-Littlewood-Richardson coefficients. Adv. Appl. Math. 30(1–2), 258–272 (2003)
Article
MathSciNet
Google Scholar
E. Sergel, A proof of the square paths conjecture. J. Comb. Theory Ser. A 152, 363–379 (2017)
Article
MathSciNet
Google Scholar
N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org. Sequence A000272
R.P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999)
Google Scholar
R.P. Stanley, Hyperplane arrangements, interval orders, and trees. Proc. Natl. Acad. Sci. 93(6), 2620–2625 (1996)
Article
MathSciNet
Google Scholar
H. Thomas, N. Williams, Sweeping up zeta. Sel. Math. (2018)
Google Scholar
A.T. Wilson, Torus link homology and the nabla operator. J. Comb. Theory Ser. A 154, 129–144 (2018)
Article
MathSciNet
Google Scholar
C.H. Yan, Parking functions, Handbook of Enumerative Combinatorics, Discrete Mathematics and Applications (CRC Press, Boca Raton, FL, 2015), pp. 835–893
Chapter
Google Scholar